Prova n°2

Avisos : Celulares desligados ; 3h de prova! Só terá validade o que estiver a caneta!

Questão 1

Seja ω a forma diferencial seguinte

$$\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + \dots + dx_{2n-1} \wedge dx_{2n}.$$

Provar que $\omega^n = n! dx_1 \wedge dx_2 \wedge \cdots \wedge dx_{2n-1} \wedge dx_{2n}$.

Questão 2

Seja ω uma forma diferencial e g um difeomorfismo de classe C^{∞} . Provar que ω é fechada se e somente se $g^*\omega$ é fechada.

Questão 3

Sejam $U \subset \mathbb{R}^n$ e $V \subset \mathbb{R}^n$ abertos e $\psi \in C^{\infty}(U, V)$. Sejam $f \in C^{\infty}(U, \mathbb{R})$ e $g \in C^{\infty}(V, \mathbb{R})$ tais que $\psi^*(gdx_1 \wedge \cdots \wedge dx_n) = fdx_1 \wedge \cdots \wedge dx_n$. Suponhamos que g não se anula. Calcular $\det(J_{\psi}(x))$ (onde $J_{\psi}(x)$ é a matriz jacobiana de ψ em x).

Questão 4

Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ um difeomorfismo tal que $f(B) \subset B$, onde B é a bola unitaria fechada de \mathbb{R}^n e tal que $|\det df(x)| < 1$ para todo $x \in B$. Provar que para toda função continua $g: B \to \mathbb{R}$ tem-se

$$\lim_{n \to \infty} \int_{f^n(B)} g(x) dx = 0$$

onde $f^n = f \circ \cdots \circ f$.

Questão 5

Seja $\alpha \in \Omega^{n-1}(\mathbb{R}^n)$ uma forma diferencial com suporte compacto. Provar que $\int_{\mathbb{R}^n} d\alpha = 0$.

Questão 6

a. Provar que para todo $x, y \in \mathbb{R}$

$$xy \le \frac{x^2}{2} + \frac{y^2}{2}.$$

b. Seja f, g duas funções integraveis num bloco A, provar a desigualdade de Schwarz :

$$\left(\int_A f(x)g(x)dx\right)^2 \le \int_A f(x)^2 dx \int_A g(x)^2 dx.$$

Questão 7

Seja $\omega \in \Omega^n(U)$ com $U \subset \mathbb{R}^{n+1}$ aberto. Para $x \in U$, seja S(r) a esfera de centro x e raio r e seja B(r) a bola de centro x e raio r. Provar que se $\{e_1, \ldots, e_{n+1}\}$ é a base canonica do \mathbb{R}^{n+1} então temos

$$d\omega(x)(e_1,\ldots,e_{n+1}) = \lim_{r\to 0} \frac{1}{vol(B(r))} \int_{S(r)} \omega.$$

Provar que ω é fechada se e somente se para todo dominio compacto $D \subset U$ de bordo ∂D de classe C^2 temos $\int_{\partial D} \omega = 0$.