Prova 1

Avisos : Celulares desligados ; 2 horas de prova!

Só terá validade o que estiver a caneta!

Questão 1

Seja f a função definida por $f(x,y) = x^y$. Calcular o polinomio de Taylor de ordem 2 de f no ponto (1,1).

Questão 2

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por

$$f(x,y) = x^2 + 2y^2.$$

Seja A o subconjunto de \mathbb{R}^2 definido por

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Encontrar os extremos de f na região A.

Questão 3

Calcular $\iint_A f(x,y) dxdy$ com $f \in A$ definidos por :

a.
$$f(x,y) = xy$$
 e A a região A limitada pelas curvas $y = x^2$ e $x = y^2$;

b.
$$f(x,y) = \frac{(x+y)^4}{y-x}$$
 e $A = \{(x,y) \in \mathbb{R}^2 : 3 - y \le x \le 5 - y, 1 + x \le y \le 3 + x\}$.

Questão 4

Achar o volume do sólido limitado superiormente pela superficie $z = \frac{1}{1+x^2+y^2}$, inferiormente pelo plano xy e lateralmente pelo cilindro $x^2 + y^2 = 1$.