Lista n°6

Exercício 1

- a. Dar uma parametrização do cilindro (infinito) de eixo Ox e de raio R.
- b. Dar uma parametrização da esfera centrada na origem e de raio r e achar o vetor normal exterior para todo ponto em coordenadas esfericas e em coordenadas cartesians.

Exercício 2

Seja S a superficie d'equação $x^4 - x^3 + xy - y^2 - z = 0$.

- a. Dar uma parametrização de S.
- b. Dar a equação do plano tangente a S para todo ponto de S.
- c. Achar o vetor normal a S para todo ponto de S.

Exercício 3

Seja S a superficie parametrizada por $\psi(u,v)=(u,v,1-v^2)$ com $u\geq 0, v\geq 0$ e $u+v\leq 1$.

- a. Dar a equação do plano tangente a S no ponto $\psi(\frac{1}{2},\frac{1}{4})$.
- b. Calcular a area de S.

Exercício 4

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 e seja S a superficie definida por

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = f(x, y)\}.$$

Provar que para todo (x,y), o vetor normal a S no ponto (x,y,f(x,y)) é

$$\overrightarrow{N}(x,y) = (-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1).$$

Exercício 5

Calcular a area de $S \in \iint_S f dS$ para :

a.
$$S = \{(x, y, z) \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2}, 0 \le z \le 1\}$$
 e $f(x, y, z) = x$;

b.
$$S = \{(x, y, z) \in \mathbb{R}^3 : z = x^3, 0 \le x \le 1, 0 \le y \le \pi\} \text{ e } f(x, y, z) = 3x^3 \text{sen } y;$$

c.
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, 1 \le z\}$$
 e $f(x, y, z) = x^2 + y^2$;

d. S a parte da superficie $x^2+y^2-z^2=0$ que se encontra acima da paraboloide $x^2+y^2-4z+3=0$ e f(x,y,z)=z.

Exercício 6

Calcular o fluxo de \overrightarrow{F} atraves de S na direção \overrightarrow{N} para :

a.
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4\}, \overrightarrow{F}(x, y, z) = (x, y, z) \in \overrightarrow{N} \text{ a normal exterior};$$

b.
$$S=\left\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=4,y+z\leq 3,0\leq z\right\},\ \overrightarrow{F}(x,y,z)=(x,y,z)$$
e \overrightarrow{N} a normal apontando para o eixo z ;

c.
$$S = \{(x, y, z) \in \mathbb{R}^3 : 3x + 2y + z = 6, 0 \le x, 0 \le y, 0 \le z\}, \overrightarrow{F}(x, y, z) = (0, z, z) \in \overrightarrow{N}$$
 a normal tal que $\overrightarrow{N} \cdot \overrightarrow{k} > 0$.

d.
$$S = \{(x, y, z) \in \mathbb{R}^3 : z^2 = x^2 + y^2, 0 \le z \le 1\}, \overrightarrow{F}(x, y, z) = (y, -x, z^2) \in \overrightarrow{N} \text{ a normal exterior.}$$

Exercício 7

Verificar o Teorema de Gauss nos casos seguintes :

a.
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4\} \in \overrightarrow{F}(x, y, z) = (xz, yz, z^2);$$

b. S é a fronteira do solido interior ao cilindro $x^2 + y^2 = 1$ e delimitado pelos planos z = 0 e z = x + 2 e $\overrightarrow{F}(x, y, z) = (x + ye^z, y + ze^x, z^2 + xe^y)$;

c.
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \ge 0\}$$
 e $\overrightarrow{F}(x, y, z) = (x^3, y^3, z^3)$.

Exercício 8

Verificar o Teorema de Stokes nos casos seguintes :

a.
$$\partial S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, x + z = 1\} \in \overrightarrow{F}(x, y, z) = (y - z, z - x, x - y);$$

b.
$$\partial S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, x + y + z = 0\} \ e \overrightarrow{F}(x, y, z) = (y + z, z + x, x + y);$$

c.
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \ge 0\}$$
 e $\overrightarrow{F}(x, y, z) = (x^2y^3, 1, z)$;

d. S o triangulo de vertices
$$(1,0,0)$$
, $(2,2,0)$ e $(1,1,0)$ e $\overrightarrow{F}(x,y,z) = (0,x^2,0)$.