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Abstract. Given a dynamical system, we prove that the shortest distance

between two n-orbits scales like n to a power even when the system has slow
mixing properties, thus building and improving on results of Barros, Liao and

the first author. We also extend these results to flows. Finally, we give an

example for which the shortest distance between two orbits has no scaling
limit.

1. Introduction

The study of the statistical properties of dynamical systems is one of the main
pillars of ergodic theory. In particular, one of the principal lines of investigation
is to try and obtain quantitative information on the long term behaviour of orbits
(such as return and hitting times, dynamical extremal indices or logarithm laws).

In a metric space pX, dq, the problem of the shortest distance between two orbits
of a dynamical system T : X Ñ X, with an ergodic measure µ, was introduced in
[BLR]. That is, for n P N and x, y P X, they studied

Mnpx, yq “MT,npx, yq :“ min
0ďi,jďn´1

dpT ipxq, T jpyqq

and showed that the decay of Mn depends on the correlation dimension.
The lower correlation dimension of µ is defined by

Cµ :“ lim inf
rÑ0

log
ş

µpBpx, rqq dµpxq

log r
,

and the upper correlation dimension Cµ is analogously defined via the limsup. If
these are equal, then this is Cµ, the correlation dimension of µ. This dimension
plays an important role in the description of the fractal structure of invariant sets
in dynamical systems and has been widely studied from different points of view:
numerical estimates (e.g. [BB, BPTV, SR]), existence and relations with other
fractal dimension (e.g. [BGT, P]) and relations with other dynamical quantities
(e.g. [FV, M]).
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It is worth mentioning that the problem of the shortest distance between orbits
is a generalisation of the longest common substring problem for random sequences,
a key feature in bioinformatics and computer science (see e.g [W]).

In [BLR, Theorem 1], under the assumption Cµ ą 0, a general lower bound for
Mn was obtained:

Theorem 1.1. For a dynamical system pX,T, µq, we have

lim sup
n

logMT,npx, yq

´ log n
ď

2

Cµ
µˆ µ-a.e. x, y.

To replace the inequality above with equality, in [BLR, Theorems 3 and 6], the
authors assumed that Cµ exists and proved

lim inf
n

logMT,npx, yq

´ log n
ě

2

Cµ
µˆ µ-a.e. x, y, (1.1)

using some exponential mixing conditions on the system.
One could naturally wonder if this mixing condition could be relaxed or even

dropped. In [BLR], a partial answer was given and it was proved that for irrational
rotation (which are not mixing) the inequality in Theorem 1.1 could be strict.

In this paper, we extend the above results (1.1) to discrete systems with no
requirement on mixing conditions. The main tool in proving our positive results
is inducing: the idea in the discrete case is to first take advantage of the fact
that Theorem 1.1 holds in great generality (including, as we note later, to higher-
dimensional hyperbolic cases) and then to show that if there is an induced version
of the system satisfying (1.1) then this inequality passes to the original system.

Moreover, we also extend the results of [BLR] to flows. Thus we first have to
prove an analogue of Theorem 1.1 and observe that in the continuous setting, the
correct scaling is Cµ´1. Then, using inducing via Poincaré sections, we also obtain
an analogue of (1.1).

We will give examples for all of these results both in the discrete and continuous
setting. We also give a class of examples in Section 5 where the conclusions of
[BLR] fail to hold. This class is slowly mixing and also does not admit an induced
version

Finally, we emphasise that one of the obstacles to even wider application is
proving that the correlation dimension Cµ exists, see Section 3.1 for some discussion
and results. For suspension flows, under some natural assumptions, we will show in
Section 4.2, that if the correlation dimension of the base exists then the correlation
dimension of the invariant measure of the flow also exists.

2. Main results and proofs for orbits closeness in the discrete case

2.1. The main theorem in the nonuniformly expanding case. We will sup-
pose that given pX,T, µq, there is a subset Y “

Ť

i Yi Ă X and an inducing time
τ : Y Ñ NYt8u, constant on each Yi, and denoted τi and so that our induced map
is F “ T τ : Y Ñ Y . We suppose that there is an F -invariant probability measure
µF with

ş

τ dµF ă 8 and which projects to µ by the following rule:

µpAq “
1

ş

τ dµF

ÿ

i

τi´1
ÿ

k“0

µF pYi X T
´kpAqq. (2.1)
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We call pY, F, µF q an inducing scheme, or an induced system for pX,T, µq. For
systems which admit an inducing scheme, we have our main theorem:

Theorem 2.1. Assume that the inducing scheme pY, F, µF q satisfies (1.1) and that
CµF “ Cµ. Then

lim
nÑ8

logMT,npx, yq

´ log n
“

2

Cµ
µˆ µ-a.e. x, y.

In Section 5 we give an example of a class of mixing systems where the conclu-
sion of this theorem fails. These systems do not have good inducing schemes, see
Remark 5.2 below.

Remark 2.2. As can be seen from the proof of this theorem, as well as related
results in this paper, in fact what we prove is that if there is an induced system
satisfying

lim inf
n

logMF,npx, yq

´ log n
ě

2

CµF
µF ˆ µF -a.e. x, y,

then

lim inf
nÑ8

logMT,npx, yq

´ log n
ě

2

CµF
µˆ µ-a.e. x, y,

with the analogous statements for flows in Section 4.

In Section 3 we will give examples of systems where tYiui is countable, µ and
µF are absolutely continuous with respect to Lebesgue and CµF “ Cµ.

Proof of Theorem 2.1. The main observation here is that it is sufficient to prove

that limkÑ8
log MT,nk px,yq
´ lognk

ě 2
Cµ

along a subsequence pnkqk which scales linearly

with k.
For x P Y , define τnpxq :“

řn´1
k“0 τpF

kpxqq. Given ε ą 0 and N P N, set

Uε,N :“ tx P Y : |τnpxq ´ nτ̄ | ď εn for all n ě Nu .

These are nested sets and by Birkhoff’s Ergodic Theorem, we have limNÑ8 µF pUε,N q “
1. In particular, by (2.1), µpUε,N q ą 0 for N sufficiently large and hence

lim
nÑ8

µ

˜

tεNu
ď

i“0

T´ipUε,N q

¸

“ 1.

So for µˆµ-typical px, yq P XˆX, there is N P N such that x, y P
ŤtεNu

i“0 T´ipUε,N q.
Set i, j ď tεN u minimal such that T ipxq, T jpyq P Uε,N Ă Y . Then [BLR, Theorem
3] implies that for any η ą 0 and sufficiently large n,

logMF,npT
ipxq, T jpyqq

´ log n
ě

2

CµF
´ η “

2

Cµ
´ η.

Putting together the facts that the n-orbit by F of T ipxq (respectively T jpyq) is a
subset of the τnpxq- (respectively τnpyq-) orbit by T of T ipxq (respectively T jpyq)
and that i, j, |τnpT

ipxqq ´ nτ̄ |, |τnpT
jpyqq ´ nτ̄ | ď nε for n ě N , we obtain

MT,nrτ̄`2εs px, yq ďMT,nrτ̄`εs

`

T ipxq, T jpyq
˘

ďMF,npT
ipxq, T jpyqq

and thus
logMT,nrτ̄`2εs px, yq

´ log n
ě

2

Cµ
´ η.
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Observing that limnÑ8
lognrτ̄`2εs

logn “ 1 and taking limit in the previous equation we

deduce that limnÑ8
log MT,npx,yq
´ logn ě 2

Cµ
´ η. Since η can be choose arbitrary small,

the theorem is proved. �

2.2. The main theorem in the nonuniformly hyperbolic case. We next con-
sider systems T : X Ñ X with invariant measure µ which are nonuniformly hyper-
bolic in the sense of Young, see [Y1]. Then there is some Y Ă X and an inducing
time τ defining F “ T τ : Y Ñ Y , with measure µF , which is uniformly expanding
modulo uniformly contracting directions. We can quotient out these contracting
directions to obtain a system F̄ : Ȳ Ñ Ȳ , which has an invariant measure µF̄ .

Theorem 2.3. Assume that the induced system pȲ , F̄ , µF̄ q satisfies (1.1) and that
Cµ “ CµF . Then

lim
nÑ8

logMT,npx, yq

´ log n
“

2

Cµ
µˆ µ-a.e. x, y.

The proof is directly analogous to that of Theorem 2.1.

2.3. Requirements on the induced system. In [BLR], the main requirement
for (1.1) to hold is that the system has some Banach space C of functions from X
to R, θ P p0, 1q and C1 ě 0 such that for all ϕ,ψ P C and n P N,

ˇ

ˇ

ˇ

ˇ

ż

ψ ¨ ϕ ˝ Fn dµF ´

ż

ψ dµF

ż

ϕ dµF

ˇ

ˇ

ˇ

ˇ

ď C1}ϕ}C}ψ}Cθ
n.

Some regularity conditions on the norms of characteristics on balls and the measures
were also required, as well as a topological condition on our metric space (always
satisfied for subset of Rn with the Euclidean metric and subset of a Riemannian
manifold of bounded curvature), but we leave the details to [BLR]. We can also
remark that for Lipschitz maps on a compact metric space with C “ Lip, these
regularity conditions can be dropped [GoRS].

In [BLR, Theorem 3] the main application was to systems where C “ BV , so for
example if we have a Rychlik interval map, and in Theorem 6 the main application
was to Hölder observables, so that the induced system is Gibbs-Markov, see for
example [A, Section 3].

3. Examples in the discrete setting

Examples of our theory require an inducing scheme and, ideally, well-understood
correlation dimensions. In [PW] correlation dimension is dealt with in the Gibbs-
Markov setting in the case tYiui is a finite collection of sets, but under inducing we
usually expect this collection to be infinite (in which case much less is known), so
this is not directly relevant here.

The simplest case in the context of our results is when the invariant probability
measure µ for the system is d-dimensional Lebesgue, or is absolutely continuous
with respect to Lebesgue (an acip) with a regular density, since in these cases the
correlation dimension for both µ and the corresponding measure for the system is
d.
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3.1. Existence of the correlation dimension. First of all, we will give a result
which implies that the correlation dimension for regular acips exists.

Proposition 3.1. Let X Ă Rd. If µ is a probability measure on X which is
absolutely continuous with respect to the d-dimensional Lebesgue measure such that
its density ρ is in L2, then

Cµ “ d.

Proof. The fact that Cµ ď d follows, for example, from [FLR, Theorem 1.4].
To prove a lower bound, we start by defining the Hardy-Littlewood Maximal

Function (see eg [SS, Chapter 2.4]) of ρ:

Mρpxq “ sup
rą0

1

LebpBpx, rqq

ż

Bpx,rq

ρpxq dx.

Moreover, by Hardy-Littlewood maximal inequality, Mρ P L2 and there exists
c1 ą 0 (depending only on d) such that

}Mρ}2 ď c1}ρ}2.

Thus, using the Cauchy-Schwarz inequality, we have
ż

µpBpx, rqq dµpxq ď

ż

Mρpxq ¨ LebpBpx, rqq ¨ ρpxq dx

ď LebpBpx, rqq

ˆ
ż

ρ2 dx

˙
1
2
ˆ
ż

pMρq2 dx

˙
1
2

ď Krd

for some K ą 0. Hence Cµ ě d and thus Cµ “ d. �

If the density of the acip is not sufficiently regular, the correlation dimension may
differ from the correlation dimension of the Lebesgue measure, as in the following
case.

Proposition 3.2. Let α P p1{2, 1q. Assume that µ is supported on r0, 1s and
dµ “ ρdx with ρpxq “ x´α. Then, we have

Cµ “ 2p1´ αq.

Proof. We write
ş

µpBpx, rqq dµpxq “
ş2r

0
µpBpx, rqq dµpxq `

ş1

2r
µpBpx, rqq dµpxq.

We estimate the first term from above by
ż 2r

0

µpp0, 3rqq dµpxq “ µpp0, 2rqqµpp0, 3rqq — r2p1´αq.

For the second term we split the sum into
şpn`1qr

nr
x´α

şx`r

x´r
t´α dt dx for n “

2, . . . , r1{rs. This yields,
ż pn`1qr

nr

x´α
ż x`r

x´r

t´α dt dx ď

ż pn`1qr

nr

x´αppn´ 1qrq´α2r À r2pnrq´2α.

Since p1{n2αqn is a summable sequence, we estimate
ş

µpBpx, rqq dµpxq from above

by r2p1´αq. Therefore Cµ ě 2p1´ αq.
On the other hand, since
ż r

0

µpBpx, rqq dµpxq —

ż r

0

px` rq1´αx´α dx ě

ż r

0

px` rq1´2α dx — r2p1´αq,
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we obtain Cµ ď 2p1´ αq. �

From now on, suppose that we are dealing with X “ Rd and µ, µF being acips
with m denoting normalised Lebesgue measure. We assume

Ť

i Yi “ Y . First notice
that if F has bounded distortion (in the one-dimensional case, it sufficient that F

is C1`α with uniform constants), dµFdm is uniformly bounded away from 0 and 1, so
CµF “ Cm “ d.

For Cµ we assume that dµ
dm “ ρ. Moreover we assume there is C ą 0 with

ρpxq ě C for any x P X and that ρ P L2. Thus Cµ “ d.

3.2. Manneville-Pomeau maps. For α P p0, 1q, define the Manneville-Pomeau
map by

f “ fα : x ÞÑ

#

xp1` 2αxαq if x P r0, 1{2q,

2x´ 1 if x P r1{2, 1s.

(This is the simpler form given by Liverani, Saussol and Vaienti, often referred to
as LSV maps). This map has an acip µ. The standard procedure is to induce on
Y “ r1{2, 1s, letting τ be the first return time to Y . Then by [LSV, Lemma 2.3],
ρ P L2 if α P p0, 1{2q. As in for example [A, Lemma 3.60], the map fτ is Gibbs-
Markov, so [BLR, Theorem 6] implies (1.1). Thus we can apply Theorem 2.1 to
our system whenever α P p0, 1{2q.

In the case α P p1{2, 1q then the density is similar to that in Proposition 3.2 and
a similar proof gives Cµ “ 2p1´ αq ă 1 “ CµF , so our upper and lower bounds on
the behaviour of Mn do not coincide.

3.3. Multimodal and other interval maps. Our results apply to a wide range of
interval maps with equilibrium states, for example many of those considered in [DT],
which guarantees the existence of inducing schemes under mild conditions. Here we
will focus on C3 interval maps f : I Ñ I (where I “ r0, 1s) with critical points with
order in p1, 2q, i.e. for c with Dfpcq “ 0, there is a diffeomorphism ϕ : U Ñ R with
U a neighbourhood of 0, such that if x is close to c then fpxq “ fpcq ˘ ϕpx´ cq`c

for `c P p1, 2q. Moreover, we assume that for each critical point c, |Dfnpcq| Ñ 8

and that for any open set V Ă I there exists n P N such that fnpV q “ I. Then as
in the main theorem in [BRSS] the system has an acip and the density is L2 and
hence Theorem 2.1 applies.

3.4. Higher dimensional examples. We will not go into details here, but there
is a large literature on nonuniformly expanding systems in higher dimensions which
have acips and which have inducing schemes with tails which decay faster than
polynomially. A standard class of examples of this are the maps derived from
expanding maps given in [ABV].

4. Orbits closeness for flows

In this section, we will extend our study to flows. First of all, as in Theorem 1.1,
we will prove that an upper bound (related to the correlation dimension of the
invariant measure) can be obtain in a general setting. Then, under some mixing
assumptions, we will give an equivalent of Theorem 2.1 for flows. We will prove the
abstract results before giving specific examples.
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Let pX,Ψt, νq be a measure preserving flow on a manifold. We will study the
shortest distance between two orbits of the flow, defined by

Mtpx, yq “MΨ,tpx, yq :“ min
0ďt1,t2ăt

dpΨt1pxq,Ψt2pyqq.

We assume that the flow has bounded speed: there exists K ě 0 such that for
T ą 0, dpΨtpxq,Ψt`T pxqq ď KT .

We will also assume that the flow is Lipschitz: there exists L ą 0 such that
dpΨtpxq,Ψtpyqq ď Ltdpx, yq, and then prove an analogue of Theorem 1.1.

Theorem 4.1. For pX,Ψt, νq a measure preserving Lipschitz flow with bounded
speed, we have

lim sup
tÑ`8

logMΨ,tpx, yq

´ log t
ď

2

Cν ´ 1
ν ˆ ν-a.e. x, y.

Proof. We define

St,rpx, yq “

ż t

0

ż t

0

1BpΨt1 pxq,rq
pΨt2pyqqdt2dt1.

Observe that for t ą 1 ą r

tpx, yq : Mtpx, yq ă ru Ă tpx, yq : S2t,K0rpx, yq ě ru

where K0 “ K `maxt1, Lu.
Indeed, for px, yq such that Mtpx, yq ă r, there exist 0 ď t̄1, t̄2 ă t, such that

dpΨt̄1pxq,Ψt̄2pyqq ă r. Thus, for any s P r0, 1s and q P r0, rs, we have

dpΨt̄1`spxq,Ψt̄2`s`qpyqq ď dpΨt̄1`spxq,Ψt̄2`spyqq ` dpΨt̄2`spyq,Ψt̄2`s`qpyqq

ď LsdpΨt̄1pxq,Ψt̄2pyqq `Kq ă K0r

and we obtain

S2t,K0rpx, yq “

ż 2t

0

ż 2t

0

1BpΨt1 pxq,K0rqpΨt2pyqqdt2dt1

ě

ż 1

0

ż s`r

s

1BpΨt̄1`spxq,K0rqpΨt̄2`s`qpyqqdqds “ r.

Then, using Markov’s inequality and the invariance of ν,

ν b ν ppx, yq : Mtpx, yq ă rq ď ν b ν ppx, yq : S2t,K0rpx, yq ě rq

ď r´1EpS2t,K0rq

“ r´1

ż 2t

0

ż 2t

0

ĳ

1BpΨt1 pxq,K0rqpΨt2pyqqdν b νpx, yqdt2dt1

“ r´1

ż 2t

0

ż 2t

0

ż

νpBpΨt1pxq,K0rqqdνpxqdt2dt1

“ r´1p2tq2
ż

ν pBpx,K0rqq dνpxq.

For ε ą 0, let us define

rt “ pt
2 log tq´1{pCν´1´εq.

By the definition of the lower correlation dimension, for t large enough, we have

ν b ν ppx, yq : Mtpx, yq ă rtq ď prtq
´1p2tq2pK0rtq

Cν´ε “
c

log t
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with c “ 4K
Cν´ε
0 . Therefore, choosing a subsequence t` “ re`

2

s, we have

ν b ν ppx, yq : Mt`px, yq ă rt`q ď
c

`2
.

Thus, by the Borel-Cantelli Lemma, for ν b ν-almost every px, yq P X ˆX, if ` is
large enough then

Mt`px, yq ě rt`

and
logMt`px, yq

´ log t`
ď

1

Cν ´ 1´ ε

ˆ

2`
log log t`

log t`

˙

.

Finally, taking the limsup in the previous equation and observing that pt`q` is

increasing, pMtqt is decreasing and lim
`Ñ`8

log t`
log t``1

“ 1, we have

lim sup
tÑ`8

logMtpx, yq

´ log t
“ lim sup

`Ñ`8

logMt`px, yq

´ log t`
ď

2

Cν ´ 1´ ε
.

Then the theorem is proved since ε can be chosen arbitrarily small. �

To obtain the lower bound, we will assume the existence of a Poincaré section
Y transverse to the direction of the flow, we denote by τpxq the first hitting time
of x in Y , and obtain F “ Ψτ on Y , the Poincaré map and µ the measure induced
on Y .

Theorem 4.2. Let pX,Ψt, νq a measure preserving Lipschitz flow with bounded
speed. We assume that there exists a Poincaré section Y transverse to the direction
of the flow such that the Poincaré map pY, F, µq, or the relevant quotiented version
pȲ , F̄ , µ̄q, satisfies (1.1). If Cµ exists and satisfies Cν “ Cµ ` 1, then

lim
tÑ`8

logMΨ,tpx, yq

´ log t
“

2

Cν ´ 1
“

2

Cµ
ν ˆ ν-a.e. x, y.

Proof. One can mimic the proof of Theorem 2.1 to prove that

lim inf
tÑ`8

logMΨ,tpx, yq

´ log t
ě

2

Cµ
“

2

Cν ´ 1
ν ˆ ν-a.e. x, y.

And the result is proved using Theorem 4.1. �

We note that we are not aware of cases where Cν and Cµ are well defined, but
the condition Cν “ Cµ ` 1 above fails. We give various examples in the remainder
of this section of cases where these conditions hold.

4.1. Examples of flows. Examples where Cν exists and there is a Poincaré section
as in Theorem 4.2 with a measure µ such that Cµ exists include Teichmüller flows
[AGY], a large class of geodesic flows with negative curvature, see [BMMW], a
classic example being the geodesic flow on the modular surface. In these cases, the
relevant measure for (the tangent bundle on) the flow is Lebesgue, and the measure
on the Poincaré section is an acip.

In the case of conformal Axiom A flows, the conditions of Theorem 4.2 hold for
equilibrium states of Hölder potentials, see the proof of [PS, Theorem 5.2].
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4.2. Suspension flows. For Theorem 4.2, we assume that Cν “ Cµ`1. Obtaining
this equality in a general setting is an open and challenging problem. In this
section, we will prove that, under some natural assumptions, for suspension flows
this equality holds.

Let T : X Ñ X be a bi-Lipschitz transformation on the separable metric space
pX, dq.

Let ϕ : X Ñ p0,`8q be a Lipschitz function. We define the space:

Y :“ tpu, sq P X ˆ R : 0 ď s ď ϕpuqu

where pu, ϕpuqq and pTu, 0q are identified for all u P X. The suspension flow or the
special flow over T with height function ϕ is the flow Ψ which acts on Y by the
following transformation

Ψtpu, sq “ pu, s` tq.

The metric on Y is the Bowen-Walters distance, see [BW]. Firstly, we recall the
definition of the Bowen-Walters distance d1 on Y when ϕpxq “ 1 for every x P X.
Let x, y P X and t P r0, 1s, the length of the horizontal segment rpx, tq, py, tqs is
defined by:

αhppx, tq, py, tqq “ p1´ tqdpx, yq ` tdpTx, Tyq.

Let px, tq, py, sq P Y be on the same orbit, the lenght of the vertical segment
rpx, tq, py, sqs is defined by

αvppx, tq, py, sqq “ inft|r| : Ψrpx, tq “ py, sq and r P Ru.

Let px, tq, py, sq P Y , the distance d1ppx, tq, py, sqq is defined as the infimum of the
lenghts of paths between px, tq and py, sq composed by a finite number of horizontal
and vertical segments. When ϕ is arbitrary, the Bowen-Walters distance on Y is
given by

dY ppx, tq, py, sqq “ d1

ˆˆ

x,
t

ϕpxq

˙

,

ˆ

y,
s

ϕpyq

˙˙

.

For more details on the Bowen-Walters distance, one can see the Appendix A of
[BS].

Let µ be a T -invariant Borel probability measure in X. We recall that the
measure ν on Y is invariant for the flow Ψ where

ż

Y

gdν “

ş

X

şϕpxq

0
gpx, sqdsdµpxq
ş

X
ϕdµ

for every continuous function g : Y Ñ R. Moreover, any Ψ-invariant measure is of
this form. For an account of equilibrium states for suspension flows, see for example
[IJT].

Theorem 4.3. Let X be a compact space and T : X Ñ X a bi-Lipschitz trans-
formation. We assume that for the invariant measure µ, the correlation dimension
exists. If Ψ is a suspension flow over T as above then

Cν “ Cµ ` 1

with respect to the Bowen-Walters distance.

Remark 4.4. Under the same assumptions, one can observe that if Cµ does not

exist, then we have Cν “ 1` Cµ and Cν “ 1` Cµ.
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Before proving the theorem, we will recall some properties of the Bowen-Walters
distance. First of all, for px, sq and py, tq P Y , we define

dπppx, sq, py, tqq “ min

$

&

%

dpx, yq ` |s´ t|
dpTx, yq ` ϕpxq ´ s` t
dpx, Tyq ` ϕpyq ´ t` s

,

.

-

.

Proposition 4.5. [BS, Proposition 17] There exists a constant c ą 1 such that for
each px, sq and py, tq P Y

c´1dπppx, sq, py, tqq ď dY ppx, sq, py, tqq ď cdπppx, sq, py, tqq.

Proof of Theorem 4.3. We will denote L a constant which is simultaneously a Lip-
schitz constant for T , T´1 and ϕ.

Let 0 ă ε ă mintϕpxqu
2 . We define

Yε “ tpx, sq P Y : ε ă s ă ϕpxq ´ εu .

We will prove that for all px, sq P Yε and all 0 ă r ă mintcε, cεL u

(a) Bpx, r2c q ˆ ps´
r
2c , s`

r
2c q Ă Y

(b) Bpx, r2c q ˆ ps´
r
2c , s`

r
2c q Ă BY ppx, sq, rq

where BY ppx, sq, rq denotes the ball centred in px, sq and of radius r with respect
to the distance dY .

Let py, tq P Bpx, r2c q ˆ ps´
r
2c , s`

r
2c q.

Since s ą ε and r
c ă ε, we have t ą s´ r

2c ą
ε
2 ą 0.

Since ϕ is L-Lipschitz, we have |ϕpxq ´ ϕpyq| ď Ldpx, yq ă Lr
2c . Moreover, since

s ă ϕpxq ´ ε, we obtain

t ă s`
r

2c
ă ϕpxq ´ ε`

ε

2

ă ϕpyq `
Lr

2c
´
ε

2
ă ϕpyq.

Thus py, tq P Y and (a) is proved.
For py, tq P Bpx, r2c q ˆ ps´

r
2c , s`

r
2c q, we can use Proposition 4.5 to obtain

dY ppx, sq, py, tqq ď cdπppx, sq, py, tqq

ď c pdpx, yq ` |s´ t|q

ă c
´ r

2c
`

r

2c

¯

“ r

and (b) is proved.
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We can now use (a) and (b) to obtain an upper bound for Cν . For 0 ă r ă
mintcε, cεL u, we have
ż

Y

νpBY ppx, sq, rqqdνpx, sq ě

ż

Y

1Yεpx, sqνpBY ppx, sq, rqqdνpx, sq

ě
1

ş

X
ϕdµ

ż

X

ż ϕpxq´ε

ε

νpBY ppx, sq, rqqdsdµpxq

ě
1

ş

X
ϕdµ

ż

X

ż ϕpxq´ε

ε

ν
´

B
´

x,
r

2c

¯

ˆ

´

s´
r

2c
, s`

r

2c

¯¯

dsdµpxq

“

ˆ

1
ş

X
ϕdµ

˙2 ż

X

ż ϕpxq´ε

ε

r

c
µ
´

B
´

x,
r

2c

¯¯

dsdµpxq

ě

ˆ

1
ş

X
ϕdµ

˙2

minpϕpxq ´ 2εq
r

c

ż

X

µ
´

B
´

x,
r

2c

¯¯

dµpxq

ě C1r

ż

X

µ
´

B
´

x,
r

2c

¯¯

dµpxq

with C1 “

´

1
ş

X
ϕdµ

¯2

minpϕpxq ´ 2εq 1
c ą 0. We conclude that

lim sup
rÑ0

log
ş

Y
νpBY ppx, sq, rqqdνpx, sq

log r
ď lim
rÑ0

logC1r
ş

X
µpBpx, r2c qqdµpxq

log r
“ 1`Cµ.

(4.1)
To prove the lower bound, we define, for px, sq P Y , the sets

B1 “ Bpx, crq ˆ ps´ rc, s` rcq

B2 “ BpTx, crq ˆ r0, rcq

B3 “ tpy, tq P Y : y P BpT´1x, Lrcq and ϕpyq ´ rc ă t ď ϕpyqu.

We have

BY ppx, sq, rq Ă pB1 YB2 YB3q X Y.

Indeed, if py, tq P BY ppx, sq, rq, then, using Proposition 4.5, we have dπppx, sq, py, tqq ď
cdY ppx, sq, py, tqq ă cr. Thus, by definition of dπ, there are three possibilities:

‚ If dπppx, sq, py, tqq “ dpx, yq ` |s ´ t|, then dpx, yq ă cr and |s ´ t| ă cr.
Thus py, tq P B1;

‚ If dπppx, sq, py, tqq “ dpTx, yq ` ϕpxq ´ s ` t, then dpTx, yq ă cr and 0 ď
t ă cr (since ϕpxq ´ s ě 0 and py, tq P Y ). Thus py, tq P B2;

‚ If dπppx, sq, py, tqq “ dpx, Tyq`ϕpyq´ t`s, then dpT´1x, yq ď Ldpx, Tyq ă
Lcr. Since s ě 0, we have ψpyq ´ t ă cr and since py, tq P Y , we have
t ď ϕpyq . Thus py, tq P B3.

Using the definition of ν we have:

νpB1 X Y q ď
1

ş

X
ϕdµ

2rcµpBpx, crqq,

νpB2 X Y q ď
1

ş

X
ϕdµ

rcµpBpTx, crqq,

νpB2 X Y q ď
1

ş

X
ϕdµ

rcµpBpT´1x, Lcrqq.
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Denoting c1 “ maxtc, Lcu, we have
ż

Y

νpBY ppx, sq, rqqdνpx, sq ď

ż

Y

νpB1 X Y q ` νpB2 X Y q ` νpB3 X Y qdνpx, sq

ď
2c

ş

X
ϕdµ

r

ˆ
ż

X

µpBpx, c1rqqdµ`

ż

X

µpBpTx, c1rqqdµ`

ż

X

µpBpT´1x, c1rqqdµ

˙

“
6c

ş

X
ϕdµ

r

ż

X

µpBpx, c1rqqdµ

since µ is T -invariant and T´1-invariant.
Finally we obtain

lim inf
rÑ0

log
ş

Y
νpBY ppx, sq, rqqdνpx, sq

log r
ě lim
rÑ0

log 6c
ş

X
ϕdµ

r
ş

X
µpBpx, c1rqqdµ

log r
“ 1`Cµ.

(4.2)
Thus by (4.1) and (4.2), the theorem is proved. �

5. A class of examples with orbits remoteness

In this section, we give an example of a class of mixing systems were (1.1) fails
to hold, see Remark 5.2 below for the relation to the other results in this paper.
This family of systems was defined in [GRS] and its mixing and recurrence/hitting
times properties were studied.

We will consider a class of systems constructed as follows. The base is a measure
preserving system pΩ, T, µq. We assume that T is a piecewise expanding Markov
map on a finite-dimensional Riemannian manifold Ω, that is:

‚ there exists some constant β ą 1 such that }DxT
´1} ď β´1 for every x P Ω.

‚ There exists a collection J “ tJ1, . . . , Jpu such that each Ji is a closed
proper set and

(M1) T is a C1`η diffeomorphism from int Ji onto its image;
(M2) Ω “ YiJi and int Ji X int Jj “ H unless i “ j;
(M3) T pJiq Ą Jj whenever T pint Jiq X int Jj ‰ H.

J is called a Markov partition. It is well known that such a Markov map is semi-
conjugated to a subshift of finite type. Without loss of generality we assume that
T is topologically mixing, or equivalently that for each i there exists ni such that
TniJi “ Ω. We assume that µ is the equilibrium state of some potential ψ : Ω Ñ R,
Hölder continuous in each interior of the Ji’s. The sets of the form Ji0,...,iq´1

:“
Şq´1
n“0 T

´nJin are called cylinders of size q and we denote their collection by Jq.
In this setting, the correlation dimension of µ exists as in [PW, Theorem 1].

Note that we could arrange our system so that our µ an acip: the density here will
be bounded, so the correlation dimension is one.

The system is extended by a skew product to a system pM,Sq where M “ ΩˆT
and S : M ÑM is defined by

Spω, tq “ pTω, t` αϕpωqq

where ϕ “ 1I is the characteristic function of a set I Ă Ω which is a union of
cylinders. In this system the second coordinate is translated by α if the first coor-
dinate belongs to I. We endow pM,Sq with the invariant measure ν “ µˆLeb (so
Cν “ Cµ ` 1). On Ωˆ T we will consider the sup distance.

We make the standing assumption on our choice of ϕ that
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‚ (NA) for any u P r´π, πs, the equation feiuϕ “ λf ˝ T , where f is Hölder
(on the subshift) and λ P S1, has only the trivial solutions λ “ 1 and f
constant.

The simple case where the I which defines ϕ is a nonempty union of size 1
cylinders such that both I and Ic contain a fixed point fulfils this assumption.

Definition 5.1. Given an irrational number α we define the irrationality exponent
of α as the following (possibly infinite) number:

γpαq “ inftβ : lim inf
qÑ8

qβ}qα} ą 0u

where } ¨ } indicates the distance to the nearest integer number in R.

First note that γpαq ě 1 for any irrational α.

Remark 5.2. By [GRS, Theorem 19], if γpαq ą dµ ` 1, then the Hitting Time
Statistics is typically degenerate. This is an indirect way of seeing that there cannot
be an inducing scheme satisfying (1.1), otherwise [BSTV, Theorem 2.1] would be
violated; it also suggests that the conclusions of Theorem 2.1 will also not hold
here, which we show below is indeed the case.

Theorem 5.3. For ν ˆ ν-a.e. x, y PM we have

lim sup
n

logMS,npx, yq

´ log n
ď min

ˆ

2

Cν
, 1

˙

“ min

ˆ

2

Cµ ` 1
, 1

˙

and

lim inf
n

logMS,npx, yq

´ log n
ď min

ˆ

2

Cν
,

1

γpαq

˙

“ min

ˆ

2

Cµ ` 1
,

1

γpαq

˙

. (5.1)

Proof. First of all, applying Theorem 1.1 to S and since one can easily show that
Cν “ Cµ ` 1, we obtain for ν ˆ ν-a.e. x, y PM

lim inf
n

logMS,npx, yq

´ log n
ď lim sup

n

logMS,npx, yq

´ log n
ď

2

Cν
“

2

Cµ ` 1
.

Moreover, one can observe that for x “ pω, tq PM and y “ pω̃, sq PM

MS,npx, yq “ min
0ďi,jďn´1

max
`

dpT ipωq, T jpω̃qq, }pt´ sq ` αpSiϕpωq ´ Sjϕpω̃qq}
˘

ě max

ˆ

min
0ďi,jďn´1

dpT ipωq, T jpω̃qq, min
0ďi,jďn´1

}pt´ sq ` αpSiϕpωq ´ Sjϕpω̃qq}

˙

ě max

ˆ

min
0ďi,jďn´1

dpT ipωq, T jpω̃qq, min
´pn´1qďiďn´1

}pt´ sq ` iαq}

˙

“ max pMT,npω, ω̃q,MR,npt, sqq

where R : T ÞÑ T with Rpsq “ s`α. Thus, by [BLR, Theorems 1 and 10] we obtain

lim sup
n

logMS,npx, yq

´ log n
ď min

ˆ

lim sup
n

logMT,npω, ω̃q

´ log n
, lim sup

n

logMR,npt, sq

´ log n

˙

ď min

ˆ

2

Cµ
, 1

˙
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and

lim inf
n

logMS,npx, yq

´ log n
ď min

ˆ

lim inf
n

logMT,npω, ω̃q

´ log n
, lim inf

n

logMR,npt, sq

´ log n

˙

ď min

ˆ

2

Cµ
,

1

γpαq

˙

.

Finally, since Cν “ Cµ ` 1 ą Cµ, the theorem is proved. �

Finally, we prove that if µ is a Bernoulli measure, then inequality (5.1) is sharp.

Theorem 5.4. We assume that all the branches of the Markov map T are full,
i.e. T pJiq “ Ω for all i, that µ is a Bernoulli measure i.e. µpra1 . . . ansq “
µpra1sq ¨ ¨ ¨µpransq, and I depends only on the first symbol, i.e. I is an union of
1-cylinders (recall that ϕ “ 1I).

If γpαq ą dµ ` 1 then

lim inf
n

logMS,npx, yq

´ log n
“

1

γpαq
ă

2

Cν
ν ˆ ν-a.e. x, y, (5.2)

Proof. First of all, we recall that Cµ ď dµ (see e.g. [P]), thus our assumption on α
implies that 1{γpαq ă 2{Cν , so (5.1) implies

lim inf
n

logMS,npx, yq

´ log n
ď

1

γpαq
.

So it remains to show the reverse of the above inequality.
By [GRS, Proposition 21], for any y, for ν-a.e. x we have

lim sup
rÑ0

logWrpx, yq

´ log r
ď maxpdµ ` 1, γpαqq (5.3)

where Wrpx, yq “ inftk ě 1, Skpxq P Bpy, rqu.
Let ε ą 0 and let x, y such that (5.3) holds. Since γpαq ě dµ` 1, for any r small

enough we have
Wrpx, yq ď r´pγpαq`εq

which implies that
MS,rr´pγpαq`εqspx, yq ă r.

Thus, for any r small enough

logMS,rr´pγpαq`εqspx, yq

´ logrr´pγpαq`εqs
ą

1

γpαq ` ε

and then

lim inf
n

logMS,npx, yq

´ log n
ě

1

γpαq ` ε
.

The theorem is proved taking ε arbitrary small. �
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Jérôme Rousseau, CREC, Académie Militaire de St Cyr Coëtquidan, 56381 GUER
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