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Introduction

Pour essayer d’étudier la réalité, les scientifiques expérimentaux ont souvent besoin
d’approcher leur système ou d’utiliser un système simplifié pour obtenir un système
de dimension plus petite, plus adapté à une analyse. Avec la même philosophie, les
scientifiques travaillant avec des systèmes de grande dimension sont généralement
juste intéressés par la mesure de certaines quantités (température, pression, vitesse
du vent, hauteur des vagues,...) ou essayent d’utiliser une mesure ou une observation
du système pour obtenir des informations sur le système entier.

En suivant ces idées, depuis le début de ma thèse de doctorat, l’un de mes
principaux objectifs a été d’étudier certaines propriétés statistiques de systèmes dy-
namiques observés. Plus précisément, pour un système dynamique (X,T, µ), au lieu
d’étudier l’orbite d’un point x (x, T (x),..., T n(x), ...), je m’intéresse à l’observation
de cet orbite (f(x), f(T (x)),..., f(T n(x)),...), où f : X → Y est une fonction à
valeur dans un espace Y (a priori de dimension plus petite que X).

D’un point de vue théorique, nous verrons comment obtenir des résultats sur les
systèmes dynamiques aléatoires grâce à l’analyse des systèmes dynamiques observés.

Les systèmes dynamiques aléatoires, qui généralisent les systèmes dynamiques
déterministes, permettent de modéliser plus précisément les phénomènes naturels
(comme par exemple l’existence de petites perturbations ou d’erreurs d’approximation).
Contrairement aux systèmes déterministes qui ne considèrent que l’itération d’une
unique fonction, avec les systèmes aléatoires nous pouvons composer des transfor-
mations différentes (en ajoutant par exemple un bruit ou des perturbations aléa-
toires). Nous noterons que cela difficulte l’analyse de leurs propriétés statistiques,
en particulier lorsque ces différentes transformations n’ont pas de mesure invariante
commune.

Dans mes travaux, je me suis concentré sur l’étude de deux objets: les temps de
retour (et d’entrée) et la plus petite distance entre des orbites.

Pour les temps de retour/entrée, ma principale contribution dans le domaine a
été de généraliser des résultats connus (sur les taux de récurrence et les fluctuations
des temps de retour/entrée) aux systèmes dynamiques observés et aux systèmes
dynamiques aléatoires.

Ainsi, dans le Chapitre 2 (dont les résultats proviennent en grande partie de la
thèse de doctorat de l’auteur), nous nous intéressons aux taux de récurrence. Plus
précisément, nous présenterons des résultats sur le comportement asymptotique du
temps de retour pour l’observation, défini par:

τ fB(f(x),r)(x) := inf
{
k ∈ N∗ : f(T kx) ∈ B (f(x), r)

}
.
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Pour des systèmes mélangeant rapidement, le comportement de τ fr (quand r → 0)
est du type r−d avec un exposant dépendant de la dimension locale de la mesure
image f∗µ [RS10]. Nous expliquerons comment utiliser ces résultats pour étudier le
comportement des temps de retour pour les systèmes dynamiques aléatoires [MR11].
Finalement, nous montrerons aussi que pour certains flots hyperboliques (et en par-
ticulier pour le flot géodésique), le comportement du temps de retour est lié à la
dimension locale de la mesure invariante [R12].

Dans le Chapitre 3, nous nous concentrons sur les fluctuations des temps d’entrée
et de retour. En particulier, en considérant τ fB(f(x0),r)(.) comme une variable aléa-
toire, nous présenterons des résultats de convergence en loi [R14].

Nous noterons ici que l’étude des distributions des temps d’entrée et de retour
s’est grandement développée ces dix dernières années. En effet, une connection a
été établie entre la distribution des temps d’entrée/retour et la Théorie des Valeurs
Extrêmes [36]. Ainsi, cela a apporté une nouvelle vision sur le sujet et de nouvelles
techniques pour étudier les évènements rares. En particulier comme ces évènements
correspondent souvent à une déviation du comportement moyen (qui, la plupart du
temps, sont liés à des événements indésirables), il y a un intérêt pratique à les étudier
et ils ont une importance cruciale dans des domaines comme la finance, l’assurance
et l’écologie, entre autres.

Nous analyserons aussi la distribution des temps d’entrée et de retour pour les
systèmes dynamiques aléatoires. Dans ce cas, deux types de résultats seront présen-
tés: des résultats intégrés (annealed) et fibrés (quenched). Dans le cas intégré,
nous obtiendrons (en appliquant nos résultats pour les observations de systèmes dy-
namiques) une convergence exponentielle pour des systèmes dynamiques aléatoires
mélangeant rapidement. Le cas fibré est plus subtile, ainsi les résultats les plus
complets seront donnés pour les sous-shifts aléatoires de type fini [RSV14, RT15]
et une convergence exponentielle sera aussi présentée pour des systèmes aléatoires
mélangeant vérifiant certaines hypothèses géométriques [HRY20].

La dernière partie du chapitre sera consacrée aux larges déviations pour les temps
de retour [CRS18].

Après les temps d’entrée/retour, le deuxième objet d’étude principal que nous
présentons ici est la plus petite distance entre les orbites. Plus précisément, pour
deux points x, y nous étudions le comportement asymptotique de la plus petite
distance entre l’orbite de x et l’orbite de y, définie par:

mn(x, y) = min
i,j=0,...,n−1

(
d(T i(x), T j(y)

)
.

Nous soulignerons ici que nous avons été la première équipe à définir et étudier cet
objet dans [BLR19]. Nous verrons donc dans le Chapitre 4 que mn décroit de façon
polynomiale avec un exposant dépendant de la dimension fractale généralisée (aussi
connu sous le nom de dimension Lq ou dimension HP ).

Les dimensions fractales généralisées ont été introduites initialement pour carac-
tériser et mesurer l’étrangeté des attracteurs chaotiques et plus généralement pour
décrire la structure fractale des ensembles invariants [43, 44]. Comme l’estimation de
ces dimensions joue un role important dans la description des systèmes dynamiques,
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différentes approches numériques et procédés ont été développés pour les calculer
(e.g. [34]) et l’étude de la plus petite distance entre les orbites apporte une nouvelle
technique pour estimer ces dimensions.

Nous décrirons aussi dans ce chapitre, le comportement de la plus petite distance
pour les observations de systèmes dynamiques et pour les systèmes dynamiques
aléatoires [BLR19, CLR20, BR21].

Il est intéressant de noter (et cela sera développé plus amplement dans le Chapitre 5)
que lorsque nous travaillons avec un système dynamique symbolique, étudier la plus
petite distance entre les orbites revient à étudier la taille de la plus grande sous-
chaine commune entre deux suites.

Le problème de la plus grande sous-chaine commune est un problème bien connu
et bien étudié avec des applications en biologie (e.g. pour l’étude des suites d’ADN),
en informatique (e.g. pour les algorithmes de compression) ou encore en linguistique
(e.g. pour des comparaison de textes ou de languages). La technique développée
dans [BLR19] pour étudier la plus petite distance nous a donc permis de généraliser
des résultats sur la plus long sous-chaine commune (en particulier les résultats de
[8]) à des processus stochastiques mélangeant rapidement mais aussi à des processus
stochastiques en milieux aléatoires [R21].

Tout au long de ce document, nous verrons que les dimensions fractales sont
liées au temps de retour mais aussi à la plus petite distance entre les orbites. Nous
rappellerons donc brièvement dans le Chapitre 1, quelques notions de théorie de
la dimension. Nous donnerons aussi la définition générale de systèmes dynamiques
aléatoires et de sous-shift aléatoire de type fini que nous utiliserons dans ce docu-
ment.

Pour distinguer mes travaux des autres références, j’utiliserai des références
alpha-numériques pour mes articles et des références numériques pour le reste.

Par souci d’homogénéité, les résultats obtenus dans les articles [RVZ12] (sur la
récurrence dans des boules dynamiques avec erreurs) et [AR16] (sur les inégalités de
concentration dans les systèmes séquentiels) ne seront pas abordés dans ce document.
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Chapter 1

A short introduction to dimension
theory and random dynamical
systems



Chapter 1. Dimension theory and random dynamical systems

In this chapter, we will recall some definitions and properties of dimension theory
and random dynamical systems.

Local dimensions and generalized fractal dimensions play a major role when
studying statistical properties of dynamical systems and will appear in our results
throughout this document. We will only give here the basic information needed
in the next chapters, we refer the reader to e.g. [31, 65] for extensive studies on
dimension theory.

Random dynamical systems will be one of the main subject of our analysis, thus
we will give in this chapter the general definition of random dynamical systems and
random subshift of finite type that we will use in this document. One can see e.g.
the review [58] for a detailed introduction to this theory.

1.1 Local dimension and generalized fractal dimen-
sions

Let X be a metric space and denote B(x, r) the ball centered in x and of radius r.
The lower and upper pointwise or local dimension of a Borel probability measure

µ on X at a point x ∈ X are defined by

dµ(x) = lim
r→0

log µ (B (x, r))

log r
and dµ(x) = lim

r→0

log µ (B (x, r))

log r
.

The measure µ is called exact dimensional if there exists a constant dµ such that

dµ(x) = dµ(x) = dµ for µ-almost every x ∈ X.

We recall that the Hausdorff dimension of a probability measure µ on X is given
by

dimH µ = inf{dimH Z : µ(Z) = 1},

where dimH Z denotes the Hausdorff dimension of Z.
For an exact dimensional measure, the Hausdorff dimension and the local dimen-

sion coincide:

Proposition 1.1 ([79]). If µ is exact dimensional, then

dµ = dimH µ.

For k 6= 1, the lower and upper generalized fractal dimensions (also known as Lq
or HP dimensions) of a measure µ are defined by:

Dk(µ) = lim
r→0

log
∫
X
µ (B (x, r))k−1 dµ(x)

(k − 1) log r

and

Dk(µ) = lim
r→0

log
∫
X
µ (B (x, r))k−1 dµ(x)

(k − 1) log r
.
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1.2. Random dynamical systems

When the limit exists we will denote the common value of Dk(µ) and Dk(µ) by
Dk(µ).

When the measure is exact dimensional, we have:

Proposition 1.2 ([17]). If µ is exact dimensional, then

lim
k→1
k>1

Dk(µ) ≤ dµ = dimH µ ≤ lim
k→1
k<1

Dk(µ).

For other properties of the generalized fractal dimensions, their existence and
relations with other dimensions, one can see e.g. [17, 32, 65, 66].

1.2 Random dynamical systems

Let Ω be a metric space and B(Ω) its Borelian σ-algebra. Let ϑ : Ω → Ω be a
measurable transformation on Ω preserving some probability measure P. Given a
compact metric space X and a family T = (Tω)ω∈Ω of transformations Tω : X → X,
we say that it defines a random dynamical system over (Ω,B(Ω),P, ϑ) via T nω =
Tϑn−1(ω) ◦ · · · ◦ Tϑ(ω) ◦ Tω for every n ≥ 1 and T 0

ω = Id.
The dynamics of the random dynamical systems generated by T over(Ω,B(Ω),P, ϑ)

is given by the skew-product:

S : Ω×X → Ω×X
(ω, x) → (ϑ(ω), Tω(x)).

A probability measure µ is invariant by the random dynamical system if it is S-
invariant and π∗µ = P, where π : Ω×X → Ω is the canonical projection.

Henceforth, we denote by ν the marginal of µ on X, i.e. ν =
∫
µω dP where

(µω)ω denote the decomposition of µ on X, that is, dµ(ω, x) = dµω(x)dP(ω). The
measures µω are called the sample measures.

1.3 Random subshift of finite type

We now give the definition of a particular random dynamical system: random sub-
shift of finite type.

Let (Ω, θ,P) be an invertible ergodic measure preserving system, set X = NN

and let σ : X → X denote the shift. Let b : Ω → N be a random variable. Let
A = {A(ω) = (aij(ω)) : ω ∈ Ω} be a random transition matrix, i.e. for any ω ∈ Ω,
A(ω) is a b(ω) × b(θω)-matrix with entries in {0, 1}, at least one non-zero entry in
each row and each column and such that ω 7→ aij(ω) is measurable for any i ∈ N
and j ∈ N. For any ω ∈ Ω define the subset of the integers Xω = {1, . . . , b(ω)} and

Eω = {x = (x0, x1, . . .) : xi ∈ Xθiω and axixi+1
(θiω) = 1 for all i ∈ N} ⊂ X,

E = {(ω, x) : ω ∈ Ω, x ∈ Eω} ⊂ Ω×X.

7



Chapter 1. Dimension theory and random dynamical systems

We consider the random dynamical system coded by the skew-product S : E → E
given by S(ω, x) = (θω, σx). Let µ be an S-invariant probability measure with
marginal P on Ω and let (µω)ω denote its decomposition on Eω, that is, dµ(ω, x) =
dµω(x)dP(ω). The measures µω are called the sample measures. Note µω(A) = 0 if
A ∩ Eω = ∅. We denote by ν =

∫
µω dP the marginal of µ on X.

We emphasize that the sample measures are not invariant. However, since θ is
invertible, by S-invariance of µ and almost everywhere uniqueness of the decompo-
sition dµ = dµω dP, we get for P-almost every ω ∈ Ω,

(σi)∗µω = µθiω for all i ∈ N.

For y ∈ X we denote by Cn(y) = {z ∈ X : yi = zi for all 0 ≤ i ≤ n − 1} the
n-cylinder that contains y and we set Fn0 (X) as the sigma-algebra in X generated
by all the n-cylinders.
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Chapter 2. Recurrence rates

Poincaré recurrence Theorem is one of the fundamental theorems at the origin
of dynamical systems. This theorem states that the orbit of almost every point will
come back as close as you want from its starting point. Unfortunately, it does not
give any information on the time needed to come back (called the return time). This
result was refined by Kač [56] who proved that for an ergodic dynamical system,
in a set of positive measure, the mean of the return time in this set is equal to the
inverse of the measure of this set.

Recent results showed relations between quantitative indicators representing the
scaling behavior of return times in small targets, decay of correlations and dimension
theory. If we consider the behavior, as r → 0, of the return time τr(x) of a point x
in B(x, r), in many interesting cases this is a power law τr(x) ∼ rR. This exponent
R gives a quantitative measure of the speed of recurrence of an orbit near to its
starting point, and this will be a quantitative recurrence indicator.

A general philosophy is that in “chaotic” systems this exponent is equal to the
local dimension of the invariant measure (see e.g. [19, 18, 73, 74, 40]).

However, considering observations of the system (for example, temperature or
pressure while studying climate) could be more significant than considering the
whole dynamical system. Thus, in [RS10], we wondered if similar results could be
obtained if we study the return time of the image (or observation) of the orbit.
More precisely, for a measurable function f : X → Y , we defined and studied
τ fr (x) := inf

{
k ∈ N∗ : f(T kx) ∈ B (f(x), r)

}
. These results will be presented in

Section 2.1 and we will explained how to use these results to study the return time
in random dynamical systems in Section 2.2.

In continuous time, results on return times are scarcer than in discrete time.
Barreira and Saussol [18] proved that for a suspension flow over an Anosov dif-
feomorphism such that the invariant measure is an equilibrium state of an Hölder
potential, the return time of ν-almost every point y in the ball B(y, r) behaves like
r− dimH ν+1 when r goes to zero (similar results have been proved for hitting time of
Lorenz like flows [41]).

Pène and Saussol [67] studied the billiard flow in the plane with periodic con-
figuration of scatterers, they proved that, almost everywhere, the return time of a
point (p, v) in the ball B((p, v), r) is of the order exp( 1

r2
) and that the return time

of the position of a point in B(p, r), i.e. the return time of the projection of the flow
on the billiard, is of the order exp(1

r
) almost everywhere.

Following these works and the idea presented above, we studied in [R12] the
recurrence rates for flows and observations of flows and these results will be presented
in Section 2.3.

2.1 Recurrence rates for observations

Let us assume that X is a metric space and A is its Borel σ-algebra.
Let (X,A, µ, T ) be a measure preserving system (m.p.s.) i.e. µ is a measure on

(X,A) with µ(X) = 1 and µ is invariant by T (i.e µ(T−1A) = µ(A) for all A ∈ A)
where T : X → X.

10



2.1. Recurrence rates for observations

Let f : X → Y be a function, called observable (we will specify the space X and
Y later).

We introduce the hitting and return time for the observation and its associated
recurrence rates.

Definition 2.1. Let f : X → RN be a measurable function, called observation, and
A ⊂ RN , we define for x ∈ X the hitting time for the observation of x in A:

τ fA(x) := inf
{
k ∈ N∗ : f(T kx) ∈ A

}
.

Also, we define for x ∈ X the return time for the observation:

τ fr (x) := inf
{
k ∈ N∗ : f(T kx) ∈ B (f(x), r)

}
.

We then define the lower and upper recurrence rate for the observation:

Rf (x) := lim inf
r→0

log τ fr (x)

− log r
R
f
(x) := lim sup

r→0

log τ fr (x)

− log r
.

We are now able to give our first result, linking recurrence rates and pointwise
dimensions:

Theorem 1 ([RS10]). Let (X,A, µ, T ) be a m.p.s. Consider a measurable observable
f : X → Y = RN . Then

Rf (x) ≤ df∗µ(f(x)) and R
f
(x) ≤ df∗µ(f(x))

for µ-almost every x ∈ X.

This result is satisfactory in the sense that it holds for any dynamical system and
observation. Moreover, under natural assumptions we will show that the equality is
true.

Remark 2.2. We observe that these inequalities may be strict, the caricatural ex-
ample is when T is the identity map. Some more interesting examples were treated
in [GRS15], where it was shown that even with a polynomial decay of correlations,
one could obtain strict inequalities.

We then can introduce the decay of correlations:

Definition 2.3. (X,T, µ) has a super-polynomial decay of correlations if, for all ψ
Lipschitz function from X to R, for all φ measurable bounded function from X to R
and for all n ∈ N∗, we have:∣∣∣∣∫

X

ψ.φ ◦ T n dµ−
∫
X

ψdµ

∫
X

φdµ

∣∣∣∣ ≤ ‖ψ‖Lip‖φ‖∞θn
with limn→∞ θnn

p = 0 for all p > 0.

To obtain optimal results on the return time for the observation we need to
assume that the system presents some kind of aperiodicity:

11



Chapter 2. Recurrence rates

Definition 2.4. A m.p.s. (X,A, µ, T ) is called µ-almost aperiodic for the observa-
tion f if

µ (x ∈ X : ∃n ∈ N∗ such that f(T nx) = f(x)) = 0.

We emphasize that this condition can be remove introducing non-instantaneous
return times [RS10].

With these conditions, we can improve the previous theorem.

Theorem 2 ([RS10]). Let (X,A, µ, T ) be a m.p.s µ-almost aperiodic for the obser-
vation f and with a super-polynomial decay of correlations. Consider a Lipschitz
observable f : X → Y = RN . Then, we have

Rf (x) = df∗µ(f(x)) and R
f
(x) = df∗µ(f(x))

for µ-almost every x such that dfµ(x) > 0.
Moreover, if f∗µ is exact dimensional, we have

Rf (x) = R
f
(x) = dimH f∗µ for µ-almost every x ∈ X.

Taking the identity function for f , we recover the result of [18] and [73] under
weaker assumptions. The main assumption of the theorem about decay of correla-
tions is satisfied in a variety of systems with some hyperbolic behavior and studied
in an abundant literature (e.g. [15, 80]).

Theorem 2 does not apply to those points where df∗µ(f(x)) = 0. When df∗µ(f(x)) =

0 also, this is not a restriction because Theorem 1 applies and gives Rf
(x) = Rf (x) =

0. However, the question remains when df∗µ(f(x)) 6= df∗µ(f(x)) = 0 on a positive
measure set. Indeed, the assumptions of Theorem 2 are not strong enough to ensure
the almost everywhere existence of the pointwise dimension for the observations.

In [RS10], a short example was given to remark that one can obtain results
on the quantitative study of Poincaré recurrence for random dynamical systems
using the study of recurrence for observations of dynamical systems. This idea was
developed in [MR11] to study recurrence rates for random dynamical systems and
will be explained in the next section.

2.2 Recurrence rates for random dynamical systems
We consider in this section T a random dynamical system on X over (Ω,B(Ω),P, ϑ)
with an invariant measure µ, as defined in Section 1.2.

For a fixed ω ∈ Ω, the quenched random hitting time in a measurable subset
A ⊂ X of the random orbit starting from a point x ∈ X is:

τωA(x) = inf{n > 0 : T nω x ∈ A}.

We also define the quenched random return time of a point x ∈ X into the open
ball B(x, r):

τωr (x) := inf {k > 0 : T nω x ∈ B(x, r)}

12



2.2. Recurrence rates for random dynamical systems

and the quenched random lower and upper recurrence rates:

Rω(x) := lim inf
r→0

log τωr (x)

− log r
and R

ω
(x) := lim sup

r→0

log τωr (x)

− log r
.

We proved in [MR11] that the recurrence rates are linked with the pointwise
dimensions of the marginal measure ν.

Theorem 3 ([MR11]). Let T be a random dynamical system on X over (Ω,B(Ω),P, ϑ)
with an invariant measure µ. For µ-almost every (ω, x) ∈ Ω×X

Rω(x) ≤ dν(x) and R
ω
(x) ≤ dν(x).

Proof. This theorem is proved using Theorem 1 applied to the dynamical system
(Ω×X,B(Ω×X), µ, S) with the observation f defined by

f : Ω×X −→ X

(ω, x) 7−→ x.

With this observation, for all (ω, x) ∈ Ω×X and for all r > 0 we identify the return
time for the observation

τ fr (ω, x) = τωr (x),

the pushforward measure
f∗µ = ν,

and the pointwise dimensions

df∗µ(f(ω, x)) = dν(x) and df∗µ(f(ω, x)) = dν(x).

Even if the inequalities in Theorem 3 can be strict, with more assumptions on
the random dynamical system one can prove that the equalities hold. This drives
us to introduce the decay of correlations for a random dynamical system:

Definition 2.5. A random dynamical system has a super-polynomial decay of corre-
lations if for all n ∈ N∗, all ψ Lipschitz observables from X to R and all φ measurable
bounded functions from X to R

|
∫
X

∫
Ω

ψ(x)φ(Tϑn−1ω ◦ . . . ◦ Tωx)dµ(ω, x)−
∫
X

ψdν

∫
X

φdν| ≤ ‖ψ‖Lip‖φ‖∞θn

with limn→∞ θnn
p = 0 for any p > 0.

As in Section 2.1 we will assume some kind of aperiodicity condition:

Definition 2.6. The random dynamical system T on X over (Ω,B(Ω),P, ϑ) with
invariant measure µ is called random-aperiodic if

µ{(ω, x) ∈ Ω×X : ∃n ∈ N, Tϑn−1ω ◦ . . . ◦ Tωx = x} = 0.
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Chapter 2. Recurrence rates

Let T0 = Rα an irrational rotation of the circle for an irrational number α and
T1 the identity map of the circle. The i.i.d. random dynamical system constructed
with this two maps chosen with the same probability P (0) = P (1) = 1

2
is not

random-aperiodic and we have P{ω ∈ Ω : τωr (x) = 1} = P (1) = 1
2
for all r > 0.

This means that after one iteration half of the points did not rotate and
(

1
2

)n of
them after n iterations. Anyway, almost every point will eventually rotate and their
dynamics will be quite interesting providing that we wait long enough. To avoid
this kind of problem with the first return time for non-random-aperiodic system,
non-instantaneous return times were introduced in [MR11](more details are also
presented on the Section 2.3 of [RS10]).
Theorem 4 ([MR11]). Let T be a random dynamical system on X over (Ω,B(Ω),P, ϑ)
with an invariant measure µ. If the random dynamical system has a super-polynomial
decay of correlations and is random-aperiodic then

Rω(x) = dν(x) and R
ω
(x) = dν(x)

for µ-almost every (ω, x) ∈ Ω×X such that dν(x) > 0.
We will now applied our results to some non-i.i.d. random expanding maps.

Other examples such as random hyperbolic toral automorphisms, random pertur-
bations of expanding maps of the circle and random perturbations of piecewise
expanding maps of the interval where also given in [MR11].
Example 2.7 (Non-i.i.d. random expanding maps). Let T1 and T2 be the two
following maps defined on the one-dimensional torus X = T1:

T1 : X −→ X and T2 : X −→ X
x 7−→ 2x x 7−→ 3x.

The dynamic of the random dynamical system is given by the following skew product

S : Ω×X −→ Ω×X
(ω, x) 7−→ (ϑ(ω), Tωx)

with Ω = [0, 1], Tω = T1 if ω ∈ [0, 2/5), Tω = T2 if ω ∈ [2/5, 1] and where ϑ is the
following piecewise linear map

ϑ(ω) =


2ω if ω ∈ [0, 1/5)
3ω − 1/5 if ω ∈ [1/5, 2/5)
2ω − 4/5 if ω ∈ [2/5, 3/5)
3ω/2− 1/2 if ω ∈ [3/5, 1].

In fact, one can observe that the random orbit is constructed by choosing the map
T1 and T2 following a Markov process with the stochastic matrix

A =

(
1/2 1/2
1/3 2/3

)
.

It was proved in [MR11] that S is Leb⊗Leb-invariant and that this random system
satisfies the assumptions of Theorem 4, thus for Leb ⊗ Leb-almost every (ω, x) ∈
[0, 1]× T1

lim
r→0

log τωr (x)

− log r
= 1.

14



2.3. Recurrence rates for flows

2.3 Recurrence rates for flows
It is natural to wonder if the results of Section 2.1 can be extend to continuous time
and more precisely if one can obtain quantitative results of recurrence for flows and
more generally for observations of flows. Thus, we studied in [R12] the recurrence
rates for flows and observations of flows.

To avoid the introduction of some complex definitions and notions, we will only
treat here a special observation (the projection on the manifold for the geodesic
flow), but we refer the reader to Section 2 and 3 of [R12] for more general results on
the recurrence rate for observation of flows presenting some hyperbolic behaviour.

Let M be a compact Riemannian manifold and d the Riemannian metric. Let
Ψ be a flow on M . Let ν be a probability measure on M invariant for the flow Ψ.
We introduce the notion of return time and recurrence rates for flows:

Definition 2.8. We define for x ∈M the return time of the flow Ψ:

τΨ
r (x) := inf{t > ηr(x) : Ψt(x) ∈ B(x, r)}

where B(x, r) is the ball centered in x and of radius r and ηr(x) is the first escape
time of the ball B(x, r), i.e. ηr(x) = inf{t > 0,Ψtx /∈ B(x, r)}. We define also the
lower and upper recurrence rates:

RΨ(x) := lim inf
r→0

log τΨ
r (x)

− log r
and R

Ψ
(x) := lim sup

r→0

log τΨ
r (x)

− log r
.

We showed that these recurrence rates are linked to the local dimension of the
invariant measure.

Firstly, we will prove a theorem satisfied for any flow:

Theorem 5 ([R12]). Let Ψ be a differentiable flow on M and ν an invariant prob-
ability measure for Ψ. For ν-almost every x ∈M which is not a fixed point

RΨ(x) ≤ dν(x)− 1 and R
Ψ

(x) ≤ dν(x)− 1.

To obtain an equality between recurrence rates and dimensions, we need more
assumptions on the system:

Theorem 6 ([R12]). Let Ψ be an Anosov flow on M . If ν is an equilibrium state
of an Hölder potential, then

RΨ(x) = dν(x)− 1 and R
Ψ

(x) = dν(x)− 1

for ν-almost every x ∈M .

We can apply, for example, the previous theorem to the geodesic flow on a smooth
manifold with striclty negative curvature. Since the geodesic flow is defined on the
unit tangent bundle T 1M , we can also considered a particular observation of this
flow: the position on the manifold M . Let Π be the canonical projection:

Π : T 1M −→ M

(p, v) 7−→ p.

15



Chapter 2. Recurrence rates

We study the return time for the canonical projection on the manifold M :

τΨ,Π
r (p, v) := inf{t > r : Π(Ψt(p, v)) ∈ B(p, r)}.

Since Ψ is the geodesic flow on T 1M , the first escape time of the projection of the
flow on the manifold of the ball B(p, r) is equal to r for r small enough. We define
the recurrence rates for the canonical projection:

RΨ,Π(p, v) := lim inf
r→0

log τΨ,Π
r (p, v)

− log r
and R

Ψ,Π
(p, v) := lim sup

r→0

log τΨ,Π
r (p, v)

− log r
.

Theorem 7 ([R12]). Let Ψ be the geodesic flow defined on T 1M and ν an invariant
probability measure for Ψ. Then for ν-almost every (p, v) ∈ T 1M

RΨ,Π(p, v) ≤ dΠ∗ν(p)− 1 and R
Ψ,Π

(p, v) ≤ dΠ∗ν(p)− 1.

Moreover, if M has a strictly negative curvature and if ν is an equilibrium state of
an Hölder potential then

RΨ,Π(p, v) = dΠ∗ν(p)− 1 and R
Ψ,Π

= dΠ∗ν(p)− 1

for ν-almost every (p, v) ∈ T 1M non-multiple such that dΠ∗ν(p) > 1.

Since the geodesic flow preserves the Lebesgue measure on T 1M , we can apply
Theorem 6 and Theorem 7 to obtain the following noteworthy result:

Corollary 2.9. Let M be a n-dimensional manifold with strictly negative curvature.
Let Ψ be the geodesic flow defined on T 1M . Then for Lebesgue-almost every (p, v) ∈
T 1M

RΨ(p, v) = 2n− 2

and
RΨ,Π(p, v) = n− 1.
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Chapter 3. Fluctuations of the return time and hitting time

After obtaining almost sure results on return times in the previous chapter, we
will concentrate here on the fluctuations of the return times and hitting times.

Firstly, we will consider the distribution of return times statistics (RTS) and
hitting time statistics (HTS) (we refer the reader to the reviews [26, 3, 74, 48] for
detailed information and bibliography on this subject). More precisely, we define
the distribution of normalized hitting time by

F hit
A (t) = µ

({
x ∈ X : τA(x) >

t

µ(A)

})
and the distribution of normalized return times by

F ret
A (t) =

1

µ(A)
µ

({
x ∈ A : τA(x) >

t

µ(A)

})
.

We are interested in the convergence in law of the distribution of normalized hitting
and return times when µ(A)→ 0 for sets A well-chosen (for example cylinders of a
partition).

Haydn, Lacroix and Vaienti [49] proved that the limit of the distribution of
the return times exists if and only if the limit of the distribution of the hitting
times exists. Moreover, an exponential distribution was proved for various families
of dynamical systems: Axiom A diffeomorphisms [52], Markov chains [70], some
rational transformations [47], uniformly expanding transformations of the interval
[27], and some non-uniformly hyperbolic systems [53, 75]. Recently, Freitas, Freitas
and Todd [36, 37] linked hitting time statistics to extreme value theory.

In this chapter, we will concentrate on the distribution of return times and hitting
time statistics for observation of dynamical systems and random dynamical systems.

In the last part of the chapter, we will concentrate on large deviation for return
time.

Several works already addressed large deviations for return time. Abadi and
Vaienti in [5] proved large deviation properties of τ(Cn)/n, where τ(Cn) is the first
return of a n-cylinder to itself.

For the n-th return time τnA into a fixed set A, a large deviation result was consid-
ered by Chazottes and Leplaideur [24] (see also [60]) for Axiom A diffeomorphisms
with equilibrium states.

In [CRS18], we study the limiting behavior as r → 0 of µ
(
τr ≥ r−dµ−ε

)
and

µ
(
τr ≤ r−dµ+ε

)
. This characterization is via asymptotic exponential bound and may

be seen as a differentiable version [16].

3.1 Exponential law for observations of dynamical
systems

In this section, we will use the setting of Section 2.1 and study the distributions of
hitting and return times for observations of dynamical systems.
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3.1. Exponential law for observations of dynamical systems

First of all, we remind that the conditional measure is

νA(B) =
ν(A ∩B)

ν(A)
.

To obtain an information on the fluctuation of the return time we will need
that the system fulfills the assumptions of the Theorem 2 and we will also need an
hypothesis on the measure:

I) For f∗µ-almost every y ∈ Rn, there exist a > 0 and b ≥ 0 such that

f∗µ (B (y, r) \B (y, r − ρ)) ≤ r−bρa

for any r > 0 sufficiently small and any 0 < ρ < r.

Following the same idea of Section 2.2, we will apply, in Section 3.2, our results to
random dynamical systems and give some examples where all the assumptions are
fulfilled. Some examples of measure which fulfilled the hypothesis (I) are given in
Lemma 44 of [74].

Our theorem on the fluctuations of the return time for the observations is the
following:

Theorem 8 ([R14]). Let (X,A, µ, T ) be a m.p.s with a super-polynomial decay of
correlations and f : X → RN a Lipschitz observation such that the system is µ-
almost aperiodic for the observation f . If hypothesis (I) is satisfied, then for every
t ≥ 0 and µ-almost every x0 ∈ X such that df∗µ(f(x0)) > 0:

lim
r→0

µ

(
x ∈ X, τ fB(f(x0),r)(x) >

t

f∗µ (B (f(x0), r))

)
= e−t

and
lim
r→0

µf−1B(f(x0),r)

(
x ∈ X, τ fB(f(x0),r)(x) >

t

f∗µ (B (f(x0), r))

)
= e−t.

One can observe that, for rapidly mixing dynamical system, we can applied this
theorem to the observation f = id and we obtain some of the results cited in the
introduction of this chapter and, in particular, a generalization of Theorem 40 of
[74]:

Corollary 3.1. Let X ⊂ RN and let (X,A, µ, T ) be a m.p.s with a super-polynomial
decay of correlations. Let us suppose that for µ-almost every y ∈ X, there exist a > 0
and b ≥ 0 such that µ (B (y, r) \B (y, r − ρ)) ≤ r−bρa for any r > 0 sufficiently small
and any 0 < ρ < r.

Then for every t ≥ 0 and for µ-almost every x0 ∈ X such that dµ(x0) > 0:

lim
r→0

µ

(
x ∈ X, τB(x0,r)(x) >

t

µ (B (x0, r))

)
= e−t

and
lim
r→0

µB(x0,r)

(
x ∈ X, τB(x0,r)(x) >

t

µ (B (x0, r))

)
= e−t.

.
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Chapter 3. Fluctuations of the return time and hitting time

One can remark that, in this corollary, we do not need the assumption on the
µ-almost aperiodicity since the system is mixing.

Remark 3.2. We observe that if a super-polynomial decay of correlations implies the
convergence to an exponential law, a polynomial decay may not be enough. Indeed,
in [GRS15], a family of systems with polynomial mixing were studied but it was
shown that for these systems the hitting time and return time distributions to balls
do not converge to the exponential law.

3.2 Annealed exponential law for random dynami-
cal systems

In this section, we will use our results for observations of dynamical systems to prove
an exponential law for random dynamical systems presenting some rapidly mixing
conditions. We will follow the setting of Section 2.2.

We emphasize that in this section we are interested in obtaining an annealed
exponential law: we fixed a point z, studied the return/hitting time around the
target z and proved an exponential law with respect to the invariant measure µ. In
the next section, we will be interested in quenched exponential law: both the target
z and the realization ω are fixed, and the exponential law is proved with respect to
the sample measures µω.

As in the previous section, we will need an assumption on the measure and an
assumption on the decay of correlations:

a) For ν-almost every x ∈ X, there exist a > 0 and b ≥ 0 such that

ν (B (x, r) \B (x, r − ρ)) ≤ r−bρa

for any r > 0 sufficiently small and any 0 < ρ < r.

b) For all n ∈ N∗, ψ Lipschitz observables from X to R and ϕ measurable bounded
from Ω×X to R

|
∫

Ω×X
ψ(x)ϕ(Sn(ω, x))dµ−

∫
X

ψdν

∫
Ω×X

ϕdµ| ≤ ‖ψ‖Lip.‖ϕ‖∞.θn

with limn→∞ θnn
p = 0 for any p > 0.

We observe that this last assumption is weaker than assuming super-polynomial de-
cay of correlations for the skew-product, however it is stronger than the assumption
used for the recurrence rates in Theorem 4.

Theorem 9 ([R14]). Let T be a random dynamical system on X over (Ω,B(Ω),P, ϑ)
with an invariant measure µ. If the random dynamical system is random-aperiodic
and satisfied hypothesis (a) and (b) then for every t ≥ 0 and for ν-almost every
z ∈ X such that dν(z) > 0:

lim
r→0

µ

(
(ω, x) ∈ Ω×X, τωB(z,r)(x) >

t

ν (B (z, r))

)
= e−t
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3.2. Annealed exponential law for random dynamical systems

and
lim
r→0

µΩ×B(z,r)

(
(ω, x) ∈ Ω×X, τωB(z,r)(x) >

t

ν (B (z, r))

)
= e−t.

The basic idea to prove this theorem is the same as the one explained in the
proof of Theorem 3.

For i.i.d. random dynamical systems, to obtain an exponential law, we just
need to assume a super-polynomial decay of correlations for the random dynamical
system, i.e. our observables are from X to R, which is a more natural assumption
than hypothesis (b).

More precisely, let {Tλ}λ∈Λ be a family of transformations defined on a compact
Riemannian manifold X and let P be a probability measure on a metric space
Λ. We will consider T a random dynamical system on X over (ΛN,PN, σ) with a
stationary measure ν, where σ is the shift. That is, for an i.i.d. stochastic process
λ = (λn)n≥1 ∈ ΛN with common distribution P , a random evolution of an initial
state x ∈ X will be:

T nλ x = Tλn ◦ . . . Tλ1x
for every n ≥ 0.

Definition 3.3. The i.i.d. random dynamical system has a super-polynomial de-
cay of correlations if, for all n ∈ N∗, ψ Lipschitz observables from X to R and ϕ
measurable bounded from X to R

|
∫

ΛN×X
ψ(x)ϕ(T nλ x)dPNdν −

∫
X

ψdν

∫
X

ϕdν| ≤ ‖ψ‖Lip.‖ϕ‖∞.θn

with limn→∞ θnn
p = 0 for any p > 0.

Theorem 10 ([R14]). Let T be an i.i.d. random dynamical system on X over
(ΛN,PN, σ) with a stationary measure ν. If the random dynamical system is random-
aperiodic, satisfied hypothesis (a) and has a super-polynomial decay of correlations
then for every t ≥ 0 and for ν-almost every z ∈ X such that dν(z) > 0:

lim
r→0
PN ⊗ ν

(
(λ, x) ∈ ΛN ×X, τλB(z,r)(x) >

t

ν (B (z, r))

)
= e−t

and

lim
r→0
PN ⊗ νΛN×B(z,r)

(
(λ, x) ∈ ΛN ×X, τλB(z,r)(x) >

t

ν (B (z, r))

)
= e−t.

Remark 3.4. We emphasize that this result extends the result of [13] for randomly
perturbed dynamical systems. The principal generalization lies in the decay of cor-
relations.

First of all, they need polynomial decay of correlations against L1 observables
when here we just need super-polynomial decay of correlations against L∞ observ-
ables. Besides, for the observables ψ, we do not assume that indicator functions of
balls are bounded in the Banach space.

Moreover, they study randomly perturbed dynamical systems, more precisely, they
perturbed an original map with random additive noise when in our setting we can
study more general random dynamical systems, as shown in the following examples.
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Chapter 3. Fluctuations of the return time and hitting time

As in Section 2.2, we will apply our results to the non-i.i.d. random expanding
maps defined in Example 2.7. Other examples, such as random circle maps ex-
panding in average and randomly perturbed dynamical systems were given in [R14,
Section 3].

Example 3.5 (Non-i.i.d. random expanding maps). As in Example 2.7, let T1 and
T2 be the two following maps defined on the one-dimensional torus X = T1:

T1 : X −→ X and T2 : X −→ X
x 7−→ 2x x 7−→ 3x

chosen following a Markov process with the stochastic matrix

A =

(
1/2 1/2
1/3 2/3

)
.

For every t ≥ 0 and for Leb-almost every z ∈ T1:

lim
r→0

Leb⊗ Leb
(
τωB(z,r)(x) >

t

r

)
= e−t

and
lim
r→0

Leb⊗ Leb[0,1]×B(z,r)

(
τωB(z,r)(x) >

t

r

)
= e−t.

3.3 Quenched exponential law for random dynami-
cal systems

In this section, we will give results on quenched HTS/RTS for random dynamical
systems. The more complete results are for random subshifts of finite type and will
be treated in Section 3.3.1. In Section 3.3.2 we will consider random dynamical
systems on manifolds modelled by a skew product which have certain geometric
properties and whose measures satisfy quenched decay of correlations at a sufficient
rate.

3.3.1 Random subshifts of finite type

We will follow in this section the definition of random subshifts of finite type given
in Section 1.3

First of all we will assume that the random variable b is such that E(log b) <∞.
This hypothesis on b guarantees that the metric entropy hµ(S,Ω×F1

0 ) is finite and
we will denote it by h.

We assume the following: there are constants h ≥ h0 > 0, c > 0, a random
variable C ∈ Lp(Ω,P) for some p ∈ (0, 1] and a summable function α(g) such that
for all m,n, A ∈ Fn0 and B ∈ Fm0 :

(I) the marginal measure ν satisfies∣∣ν(A ∩ σ−g−nB)− ν(A)ν(B)
∣∣ ≤ α(g);
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3.3. Quenched exponential law for random dynamical systems

(II) µω(Cn(y)) ≤ ce−h0n for any y ∈ X and n ≥ 1, for P-almost every ω ∈ Ω;

(III) For P-almost every ω ∈ Ω∣∣µω(A ∩ σ−g−nB)− µω(A)µθn+gω(B)
∣∣ ≤ C(ω)α(g).

Theorem 11 ([RSV14]). We assume that hypothesis (I), (II) and (III) hold and
that there exists a constant q > h

h0
(1 + 3

p
) such that α satisfies α(g)gq → 0 when

g → +∞. For ν-almost every z, P-almost every ω and all t ≥ 0 we have

lim
n→∞

µω

(
τCn(z)(·) >

t

ν(Cn(z))

)
= e−t

This can be view as a quenched exponential law for hitting time. The later
convergence together with integration over Ω and dominated convergence theorem
yields the following annealed version:

Corollary 3.6. Under the same hypothesis of Theorem 11, for ν-almost every z
and t ≥ 0,

lim
n→∞

ν

(
τCn(z)(·) >

t

ν(Cn(z))

)
= e−t.

The limit law in Theorem 11 is only obtain for typical point z, a natural question
that arises here is: what about non-typical points? In the deterministic setting, it
has been shown in [52, 35, 38] that if the point z is periodic, then the distribution
is of the form e−Θt where Θ ∈ (0, 1) is a parameter which takes into account the
amount of repulsion at z. Indeed, in a general subshift of finite type setting in [35],
and a more restricted setting in [38], a dichotomy was proved: it was shown that the
limit exists for any z, and is e−Θt for Θ ∈ (0, 1) in the case that z is periodic, and
Θ = 1 in the case when z is non-periodic. Some of these results were motivated by
the connection of HTS laws to Extreme Value Laws (EVL), see [28, 36], one reason
why Θ can be referred to as the extremal index.

Thus, in [RT15], we obtain a limit for every point and proved a dichotomy similar
to the one in the discrete case. To do so, we will need stronger assumptions. We
assume that there are constants h1 > 0 and c0 > 0 such that for all m,n, g ∈ N,
A ∈ Fn0 and B ∈ Fm0 :

(III-a) for P-almost every ω ∈ Ω,∣∣µω(A ∩ σ−g−nB)− µω(A)µθn+gω(B)
∣∣ ≤ α(g)µω(A)µθn+gω(B);

(IV) for P-almost every ω ∈ Ω, if y ∈ Xω and n ≥ 1 then c−1
0 e−h1n ≤ ν(Cn(y));

(V) the sample measures satisfy

ess-sup
ω∈Ω

sup
x∈X

µω(C1(x)) < 1.

With these stronger assumptions, we can obtain the following dichotomy:

23



Chapter 3. Fluctuations of the return time and hitting time

Theorem 12 ([RT15]). Assume (I), (III-a), (IV) and (V) hold and that there exists
a constant q > 2h0

h1
such that α satisfies α(g)gq → 0 as g → +∞. Let z ∈ X. Then

for P-almost every ω, either

(a) z is a periodic point of period p and if the limit Θ := limn→∞
ν(Cn(z)\Cn+p(z))

ν(Cn(z))

exists, then for all t ≥ 0 we have

lim
n→∞

µω

(
τCn(z)(·) >

t

ν(Cn(z))

)
= e−Θt;

or

(b) for all t ≥ 0 we have

lim
n→∞

µω

(
τCn(z)(·) >

t

ν(Cn(z))

)
= e−t.

This dichotomy can be compared with the dichotomy for deterministic systems,
see for example [1] or [13, Theorem A]. Analogously to Corollary 3.6 we easily obtain
the following annealed law.

Corollary 3.7. Under the same hypothesis of Theorem 12, for z ∈ X, either

(a) z is a periodic point of period p and if the limit Θ := limn→∞
ν(Cn(z)\Cn+p(z))

ν(Cn(z))

exists, then for all t ≥ 0 we have

lim
n→∞

ν

(
τCn(z)(·) >

t

ν(Cn(z))

)
= e−Θt;

or

(b) for all t ≥ 0 we have

lim
n→∞

ν

(
τCn(z)(·) >

t

ν(Cn(z))

)
= e−t.

Remark 3.8. 1. In both of the above results, for the standard examples the limit
Θ does indeed exist [RT15][Section 5].

2. Theorem 12 works only in the case of finite alphabet since assumption (II)
cannot be fulfilled otherwise. A stronger mixing assumption for the marginal
measure µ allowed us to treat the case of infinite alphabets in [RT15].

3. One can prove [RT15][Lemma 2.1] that assuming (III-a) and (V) implies that
(II) holds.

Here, we will apply our results to random Bernoulli shifts. Random Gibbs Mea-
sures were also treated in [RT15].
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3.3. Quenched exponential law for random dynamical systems

Example 3.9 (Random Bernoulli shifts). Let s ≥ 1 and (Ω, θ) be a subshift of finite
type on the symbolic space {0, 1, . . . , s}Z and let P be a Gibbs measure from a Hölder
potential.

Let b ≥ 1 and make the shift {0, 1, . . . , b}N a random subshift by putting on it
the random Bernoulli measures constructed as follows. Let W = (wij) be a s × b
stochastic matrix with entries in (0, 1). Set pj(ω) = wω0,j. The random Bernoulli
measure µω is defined by

µω([x0 . . . xn]) = px0(ω)px1(θω) . . . pxn(θnω).

We proved in [RSV14] and [RT15] that one can apply Theorem 12.
We also observe that, for example, when the base is i.i.d., for z is a periodic

point of period p, we can compute the extremal index:

Θ =

∫
(1− pz0(ω))dP· · ·

∫
(1− pzp−1(ω))dP.

3.3.2 Random maps

We will follow in this section the definition of random dynamical system given in
Section 1.2.

Moreover, we will assume that ϑ : Ω → Ω is the two-sided shift map on a full
shift space Ω and that the measure P is ergodic. We also assume that X is a compact
manifold and for every ω ∈ Ω, Tω = Tω0 .

For every realisation ω ∈ Ω, let Γu(ω) be a collection of unstable leaves γu(ω)
and Γs(ω) a collection of stable leaves γs(ω). We assume that γu ∩ γs consists of a
single point for all (γu, γs) ∈ Γu×Γs. The map Tω contracts along the stable leaves
and similarly the inverse branches of Tω contract along the unstable leaves.

For an unstable leaf γu(ω) denote by µγuω the disintegration of µω with respect to
the γu. We assume that µω has a product like decomposition dµω = dµγ

u

ω dυω(γu),
where υω is a transversal measure. That is, if f is a function on X then∫

f(x) dµω(x) =

∫
Γu(ω)

∫
γu
f(x) dµγ

u

ω (x) dυω(γu).

If γu, γ̂u ∈ Γu(ω) are two unstable leaves then the holonomy map H : γu → γ̂u is
defined such that by H(x) is the unique point of intersection between γ̂u and γs(x)
for x ∈ γu, where γs(x) is the local stable leaf through x.

Let us denote by Jωn = dTnω µ
γu

ω

dµγ
u
ω

the Jacobian of the map T nω with respect to the
measure µω in the unstable direction.

Fix ω and let γu be a local unstable leaf. Assume there exist R > 0 and for
every n ∈ N finitely many yk ∈ T nω γu so that T nω γu ⊂

⋃
k BR,γu(yk), where BR,γu(y)

is the embedded R-disk centered at y in the unstable leaf γu. Denote by ζϕ,k =
ϕ(BR,γu(yk)) where ϕ ∈ Iωn and Iωn denotes the inverse branches of T nω . We call
ζ an n-cylinder. Then there exists a constant L so that the number of overlaps
Nϕ,k = |{ζϕ′,k′ : ζϕ,k∩ζϕ′,k′ 6= ∅, ϕ′ ∈ Iωn}| is bounded by L for all ϕ ∈ Iωn and for all k
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Chapter 3. Fluctuations of the return time and hitting time

and n. This follows from the fact that Nϕ,k equals |{k′ : BR,γu(yk)∩BR,γu(yk′) 6= ∅}|
which is uniformly bounded by some constant L.

To obtain an exponential law for the distribution of hitting time and return time,
we need a few assumptions. First of all, we need information on the annealed and
quenched decay of correlations:
(I) There exists a decay function λ(k) so that∣∣∣∣∫

Ω

∫
X

ψ(x)φ(T kωx) dµ(ω, x)−
∫
X

ψdν

∫
X

φdν

∣∣∣∣ ≤ λ(k)‖ψ‖Lip‖φ‖∞ ∀k ∈ N

for every ψ ∈ Lip(X,R) and φ ∈ L∞(X,R).
(II) For P-almost every ω, the individual measure µω has the following decay of
correlations∣∣∣∣∫

X

ψ(x)φ(T kωx) dµω(x)−
∫
X

ψdµω

∫
X

φdµθkω

∣∣∣∣ ≤ λ(k)‖ψ‖Lip‖φ‖∞ ∀k ∈ N,

for every φ ∈ L∞(X,R) which are constant on local stable leaves γs of Tω and for
every ψ ∈ Lip(X,R).
Then, we need some geometric assumptions:
(III) (Distortion) For P-almost every ω, we require that Jωn (x)

Jωn (y)
= O(Θ(n)) for all

x, y ∈ ζ and n, where ζ are n-cylinders in unstable leaves γu and Θ is a non-
decreasing function which below we assume to be Θ(n) = O(nκ

′
) for some κ′ ≥ 0.

(IV) (Contraction) There exists a function δ(n)→ 0 which decays at least summably
polynomially, i. e. δ(n) = O(n−κ) with κ > 1, so that diam ζ ≤ δ(n) for all n-
cylinder ζ and all n and ω.
Finally, we need some information on the measures:
(V) There exist 0 < d0 < d1 and K such that rd0 ≥ ν(B(z, r)) ≥ rd1 and

1

K
≤ ν(B(z, r))

µω(B(z, r))
≤ K

for all r > 0 small enough, for µω-almost every z ∈ X and P-almost every ω ∈ Ω.
(VI) (Annulus condition) Assume that for some ξ ≥ β > 0:

sup
ω

µω(B(z, r + ρ) \B(z, r − ρ))

ν(B(z, r))
= O(

ρξ

rβ
)

for every ρ < r.

We can now state the main results of [HRY20]. Here µω|B is the conditional
measure of µω restricted to the set B ⊂ X. Under the previous assumption we
obtain an exponential law for the distribution of hitting times and return times.

Theorem 13 ([HRY20]). Let a random dynamical system satisfy the above require-
ments (I)–(VI) where δ and λ both decay super-polynomially fast.

Then
lim
r→0

µω

(
x ∈ X : τωB(z,r)(x) >

t

ν(B(z, r))

)
= e−t
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and

lim
r→0

µω|B(z,r)

(
x ∈ X : τωB(z,r)(x) >

t

ν(B(z, r))

)
= e−t

for all t > 0, for µω-almost every z ∈ X and P-almost every ω ∈ Ω.

It is important to notice that this was the first paper where a quenched law
was proved for the return times. Indeed, in [RSV14, RT15, 39], the law was only
obtained for the hitting times. This is a significant difference with the deterministic
setting where if a limiting distribution exists for the hitting times, then it also exists
for the return times (and the other way around) [49].

One can see in [HRY20, Theorem 2.3] that even if δ and λ do not decay super-
polynomially fast, one can still obtain an exponential distribution assuming some
technical conditions on the constants present in the hypothesis (I)–(VI).

This theorem was applied in [HRY20] to random C2 maps of the interval, random
parabolic maps on the unit interval and random perturbation of partially hyperbolic
attractors on a compact Riemannian manifold.

3.4 Large deviation estimates for return times

In this section, we will obtain large deviation estimates for return times, in the
deterministic setting (i.e. we follow the setting of Section 2.1).

We define the rate functions which will appear in our large deviations estimates.
The first one is related to the deviations in the pointwise dimension; it has been
computed in [66] in the case of conformal repellers.

Definition 3.10. The exponential rate for dimension is defined for ε > 0 by:

ψ(±ε) = lim
r→0

1

log r
log µ

({
log µ(B(x, r))

− log r
∈ I±ε

})
,

where Iε = (−∞,−dµ − ε) and I−ε = (−dµ + ε,+∞).

The second quantifies the probability of quick returns near the origin.

Definition 3.11. The exponential rate for fast return times is defined for ε, a > 0
by:

ϕ(a, ε) = lim
r→0

1

log r
log µ

({
x0 : µB(x0,2r)

(
τB(x0,2r) ≤ r−dµ+ε

)
≥ Cra

})
, (3.1)

for some constant C > 0.

We may now state the main result proved in [CRS18]. We emphasize that the
value of C in (3.1) is irrelevant in the theorem.
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Chapter 3. Fluctuations of the return time and hitting time

Theorem 14 ([CRS18]). Let (X,A, µ, T ) be a m.p.s. Suppose that µ is an exact
dimensional measure. Given ε > 0, we have:

lim
r→0

1

log r
log µ

(
τr ≥ r−dµ−ε

)
≥ max

γ∈(0,1)
min

{
(1− γ)ε, ψ(γε)

}
(3.2)

and

lim
r→0

1

log r
log µ

(
τr ≤ r−dµ+ε

)
≥ max

γ∈(0,1)
a,ε′′>0

min
{
−γε− ε′′ + a, ψ(γε), ϕ(a, ε), ψ(−ε′′)

}
.

This result is satisfactory in the sense that it can be applied to a broad class of
dynamical systems, provided one can estimate the rate functions ψ and ϕ.

The rate function for dimension ψ is rather classical. We can observe that in
(3.2) if the rate function for dimension ψ is positive in some interval (0, ε), it readily
implies that µ

(
τr ≥ r−dµ−ε

)
has a fast decay.

The rate function ϕ is not so well known. However, for several dynamical systems
an estimation of the error in the approximation to the exponential law for return
time has been computed. In many cases, including Hénon maps [23, Theorem 3.1],
it is possible to show that for some a, b > 0, and any sufficiently small r > 0,

E1 there exists a set Ωr ⊂ X such that µ(Ωc
r) < rb;

E2 for all x ∈ Ωr,

sup
t≥0

∣∣∣∣µB(x,r)

(
τB(x,r) >

t

µ(B(x, r))

)
− e−t

∣∣∣∣ ≤ ra.

The conditions E1-E2 imply that ϕ(a, ε) ≥ min{ψ(a − ε), b} [CRS18][Proposition
4.2].

Finally, we observe that in [CRS18] we apply our result to C1+α conformal re-
peller with an equilibrium state of a Hölder potential. Then, we compute the rate
functions and obtain large deviation estimates for return times for repeller.
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Chapter 4. Shortest distance between orbits

In this chapter we study the behaviour of the shortest distance between k orbits,
i.e. for (x1, . . . , xk) ∈ Xk:

mn(x1, . . . , xk) = min
i1,...,ik=0,...,n−1

(
d(T i1x1, . . . , T

ikxk)
)
,

where d(x1, . . . , xk) = max
i 6=j

d(xi, xj), and show a relation between this shortest

distance and the generalized fractal dimensions.
Even if the shortest distance between orbits seems to be something natural to

define and study, to the best of our knowledge, it was done for the first time in our
article [BLR19]. One can observe that this quantity shares some similarities with
the correlation sum and the correlation integral of the Grassberger-Procaccia algo-
rithm [44, 45] and the nearest neighbour analysis [29], with the synchronization of
coupled map lattices [33], with dynamical extremal index [34], with the connectivity,
proximality and recurrence gauges defined by Boshernitzan and Chaika [20] and also
with logarithm laws and shrinking target properties (see e.g. the survey [12]). One
can also remark that information on the hitting time can give information on the
shortest distance. Indeed, if τB(y,r)(x) ≤ n, we have mn(x, y) < r. Moreover, we
will explain in the next chapter the connection between the shortest distance and a
well-known probabilistic problem: the longest common substring problem.

4.1 Shortest distance between k orbits
In this section, we will denote by µk the product measure µ⊗ · · · ⊗ µ.

First of all, we observe that defining a distance between more than two points is
not classical. Here, we will use the following distance d(x1, . . . , xk) = max

i 6=j
d(xi, xj).

However, other definitions could have been chosen for d(x1, . . . , xk) without altering
our results (see e.g. [77] and references therein for examples of generalizations of
the usual two-way distance). For example, we could have used d1(x1, . . . , xk) =

minz∈X maxi d(xi, z), or d2(x1, . . . , xk) =
√∑

i 6=j d(xi, xj)2 but our results would
have been the same since d, d1, and d2 are equivalent.

We will show that the behaviour of mn as n→∞ is linked with the generalized
fractal dimension. The case k = 2, that is the study of the shortest distance between
2 orbits, was treated in [BLR19] while the case k ≥ 2 was treated in [BR21].

Theorem 15 ([BLR19, BR21]). Let (X,A, µ, T ) be a measure preserving system
such that Dk(µ) > 0. Then for µk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

logmn(x1, . . . , xk)

− log n
≤ k

(k − 1)Dk(µ)
.

This general result can be applied to any dynamical system such that Dk(µ) > 0.
Even if the inequality in Theorem 15 can be strict (noting for example the trivial
case when T is the identity), we will prove that an equality holds under some rapidly
mixing conditions:
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4.1. Shortest distance between k orbits

(H1) There exists a Banach space C, such that for all ψ, φ ∈ C and for all n ∈ N∗,
we have ∣∣∣∣∫

X

ψ.φ ◦ T n dµ−
∫
X

ψdµ

∫
X

φdµ

∣∣∣∣ ≤ ‖ψ‖C‖φ‖Cθn,
with θn = an (0 ≤ a < 1) and where ‖ · ‖C is the norm in the Banach space C.

(H2) There exist 0 < r0 < 1, c ≥ 0 and ξ ≥ 0 such that for every p ∈ {1, . . . , k},
for µk−p-almost every xp+1, . . . , xk ∈ X and any 0 < r < r0, the function ψp : X →
R, defined below, belongs to the Banach space C and verify

‖ψp‖C ≤ cr−ξ.

Fixed x2, . . . , xk ∈ X, we define

ψ1(x) =
k∏
j=2

1B(xj ,r)(x).

For p > 1, we fix xp+1, . . . , xk ∈ X, and set

ψp(x) = ψ̄(x, xp+1, . . . , xk), where

ψ̄(xp, xp+1, . . . , xk)

=
k∏

l=p+1

1B(xl,r)(xp)

∫
Xp−1

[
p−1∏
j=1

k∏
l=j+1

1B(xj ,r)(xl)

]
dµp−1(x1, . . . , xp−1).

When the Banach space C is the space of Hölder functions Hα(X,R), we will
replace our assumption (H2) by an assumption easier to interpret in Theorem 17.

We will also need some topological information on the space X.

Definition 4.1. A separable metric space (X, d) is called tight if there exist r0 > 0
and N0 ∈ N, such that for any 0 < r < r0 and any x ∈ X one can cover B(x, 2r) by
at most N0 balls of radius r.

We emphasize that any subset of Rn with the Euclidian metric is tight, any
subset of a Riemannian manifold of bounded curvature is tight and that if (X, d)
admits a doubling measure then it is tight [46].

Theorem 16 ([BLR19, BR21]). Let (X,A, µ, T ) be a measure preserving system,
such that (X, d) is tight, satisfying (H1) and (H2) and such that Dk(µ) > 0. Then
for µk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

logmn(x1, . . . , xk)

− log n
≥ k

(k − 1)Dk(µ)
.

Moreover, if Dk(µ) exists then for µk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

logmn(x1, . . . , xk)

− log n
=

k

(k − 1)Dk(µ)
.
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When the Banach space C is the space of Hölder functions Hα(X,R) we can
adapt our proof and (H2) can be replaced by the following condition:

(HA) There exist r0 > 0, ξ ≥ 0 and β > 0 such that for µ-almost every x ∈ X
and any r0 > r > ρ > 0,

µ(B(x, r + ρ)\B(x, r − ρ)) ≤ r−ξρβ.

This assumption is satisfied, for example, if the measure is Lebesgue or absolutely
continuous with respect to Lebesgue with a bounded density.

Theorem 17 ([BLR19, BR21]). Let (X,A, µ, T ) be a measure preserving system,
such that Dk(µ) > 0 and such that (X, d) is tight, satisfying (H1) with C = Hα(X,R)
and (HA). Then for µk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

logmn(x1, . . . , xk)

− log n
≥ k

(k − 1)Dk(µ)
.

For example, one can apply this theorem to expanding maps of the interval with a
Gibbs measure associated to a Hölder potential (see e.g. [74]) and C2 endomorphism
(of a d-dimensional compact Riemannian manifold) admitting a Young tower with
exponential tail (see [36, Section 6] and [28]).

We now will apply Theorem 16 to a short list of simple examples and to a more
complex family of examples (multidimensional piecewise expanding maps). Finally,
for irrational rotations (which do not satisfy the mixing assumption of Theorem 16),
we will show a relation between the shortest distance and the irrationality exponent.

Example 4.2. Theorem 16 can be applied to the following systems:

1. For m ∈ {2, 3, . . . }, let T : [0, 1] → [0, 1] be such that x 7→ mx mod 1 and
µ = Leb.

2. Let T : (0, 1] → (0, 1] be such that T (x) = 2n(x − 2−n) for x ∈ (2−n, 2−n+1]
and µ = Leb.

3. (β-transformations) For β > 1, let T : [0, 1] → [0, 1] be such that x 7→ βx
mod 1 and µ be the Parry measure (see [64]), which is an absolutely continuous
probability measure with density ρ satisfying 1− 1

β
≤ ρ(x) ≤ (1− 1

β
)−1 for all

x ∈ [0, 1].

4. (Gauss map) Let T : (0, 1]→ (0, 1] be such that T (x) =
{

1
x

}
and dµ = 1

log 2
dx

1+x
.

In these examples it is easy to see that Dk(µ) = 1. Moreover, (H1) and (H2) are
satisfied with the Banach space C = BV, the space of functions of bounded variation
(see e.g. [38] Section 4.1 and [54, 68, 69]).

Example 4.3 (Multidimensional piecewise expanding systems). In this example,
we apply Theorem 16 to a family of maps defined by Saussol [72]: multidimensional
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4.1. Shortest distance between k orbits

piecewise uniformly expanding maps. It was observed in [6] that these maps general-
ize Markov maps which also contain one-dimensional piecewise uniformly expanding
maps.

Let N ≥ 1 be an integer. We will work in the Euclidean space RN . We denote
by Bε(x) the ball with center x and radius ε. For a set E ⊂ RN , we write

Bε(E) := {y ∈ RN : d(y, E) ≤ ε}.

Let X be a compact subset of RN with X◦ = X and T : X → X. The system
(X,T ) is a multidimensional piecewise expanding system if there exists a family of
at most countably many disjoint open sets Ui ⊂ X and Vi such that Ui ⊂ Vi and
maps Ti : Vi → RN satisfying for some 0 < α ≤ 1, for some small enough ε0 > 0,
and for all i:

1. T |Ui = Ti|Ui and Bε0(TUi) ⊂ Ti(Vi);

2. Ti ∈ C1(Vi), Ti is injective and T−1
i ∈ C1(TiVi). Moreover, there exists a con-

stant c, such that for all ε ≤ ε0, z ∈ TiVi and x, y ∈ Bε(z) ∩ TiVi we have

| detDxT
−1
i − detDyT

−1
i | ≤ cεα| detDzT

−1
i |;

3. Leb(X \
⋃
i Ui) = 0;

4. there exists s = s(T ) < 1 such that for all u, v ∈ TVi with d(u, v) ≤ ε0 we have
d(T−1

i u, T−1
i v) ≤ sd(u, v);

5. let G(ε, ε0) := supxG(x, ε, ε0) where

G(x, ε, ε0) =
∑
i

Leb(T−1
i Bε(∂TUi) ∩B(1−s)ε0(x))

m(B(1−s)ε0(x))
,

then the number η = η(δ) := sα + 2 supε≤δ
G(ε)
εα
δα satisfies supδ≤ε0 η(δ) < 1.

If (X,T ) is a topologically mixing multidimensional piecewise expanding map and µ
be its absolutely continuous invariant probability measure, then for µk-almost every
(x1, . . . , xk) ∈ Xk,

lim
n→+∞

logmn(x1, . . . , xk)

− log n
=

k

(k − 1)N
.

Example 4.4 (Irrational rotations). For θ ∈ R \Q, let Tθ be the irrational rotation
on the unit circle T = R/Z defined by

Tθx = x+ θ.

Then for any n ∈ Z, we have T nθ x = x+ nθ and the shortest distance becomes

mn(x, y) = min
−n≤j≤n

‖(x− y) + jθ‖.
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The limit behavior of mn(x, y) is thus linked to the inhomogeneous Diophantine
approximation.

Let
η = η(θ) := sup{β ≥ 1 : lim inf

j→∞
jβ‖jθ‖ = 0}

be the irrationality exponent of θ.
In [BLR19], we showed that the result of Theorem 16 does not hold for Tθ. More

precisely, we proved that for Lebesgue almost all (x, y) ∈ T2, we have

lim inf
n→∞

logmn(x, y)

− log n
=

1

η
and lim sup

n→∞

logmn(x, y)

− log n
= 1.

4.2 Shortest distance between observed orbits

Following the ideas of Sections 2.1 and 3.1, in this section, we extend our analysis
to the study of observation of orbits.

Let (Y, d) be a metric space and f : X → Y be a measurable function.
We will study the behaviour of the shortest distance between k observed orbits:

mf
n(x1, . . . , xk) = min

i1,...,ik=0,...,n−1

(
d(f(T i1x1), . . . , f(T ikxk))

)
.

The case k = 2 was treated in [CLR20] while the case k ≥ 2 was treated in
[BR21].

Theorem 18 ([CLR20, BR21]). Let (X,A, µ, T ) be a measure preserving system
such that Dk(f∗µ) > 0. Then for µk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

logmf
n(x1, . . . , xk)

− log n
≤ k

(k − 1)Dk(f∗µ)
.

We will assume that f is Lipschitz and as in Section 4.1, we prove that the
equality holds under some rapidly mixing conditions:

(H1’) For all ψ, φ ∈ Hα(Y,R) and for all n ∈ N∗, we have∣∣∣∣∫
X

ψ(f(x)).φ(f(T nx)) dµ(x)−
∫
X

ψ(f(x))dµ(x)

∫
X

φ(f(x))dµ(x)

∣∣∣∣ ≤ ‖ψ◦f‖Hα‖φ◦f‖Hαθn,
with θn = an (0 ≤ a < 1).

For simplicity, we only treat the case when the mixing property is satisfied for
Hölder observables. However, we observe that on can adapt the assumptions (H1)
and (H2) of the previous section to this setting to work with other Banach spaces.

Now we can state our version of Theorem 17 for observed orbits.

Theorem 19 ([CLR20, BR21]). Let (X,A, µ, T ) be a measure preserving system
and f a Lipschitz observation, such that Dk(f∗µ) > 0 and such that (Y, d) is
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tight, satisfying (H1’) and such that f∗µ satisfies (HA). Then for µk-almost every
(x1, . . . , xk) ∈ Xk,

lim
n→+∞

logmf
n(x1, . . . , xk)

− log n
≥ k

(k − 1)Dk(f∗µ)
.

Moreover, if Dk(f∗µ) exists, then for µk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

logmf
n(x1, . . . , xk)

− log n
=

k

(k − 1)Dk(f∗µ)
.

4.3 Shortest distance between multiple random or-
bits

In this section, we follow the ideas and setting of Sections 2.2 and 3.2 and use the
results on the shortest distance between observe orbits to study the shortest distance
between multiple orbits of a random dynamical system.

For (ω1, x1), . . . , (ωk, xk), we define the shortest distance between k random orbits
by

mω1,...,ωk
n (x1, . . . , xk) = min

i1,...,ik=0,...,n−1

(
d
(
T i1ω1

(x1), . . . , T ikωk(xk)
))
.

Remark 4.5. We observe that the technic developed here only allows us to obtain
annealed results. Another object worth studying would be the quenched shortest dis-
tance

mω
n(x1, . . . , xk) = min

i1,...,ik=0,...,n−1

(
d
(
T i1ω (x1), . . . , T ikω (xk)

))
.

In this direction, the only known results are when the system is a random subshift
of finite type and will be explain in Section 5.3.

As in the deterministic case, we will assume an exponential decay of correlations
for the random dynamical system:

(H1R) (Annealed decay of correlations) For every n ∈ N∗, and every ψ, φ ∈
Hα(X,R),∣∣∣∣∫

Ω×X
ψ(T nω (x))φ(x) dµ(ω, x)−

∫
Ω×X

ψ dµ

∫
Ω×X

φ dµ

∣∣∣∣ ≤ ‖ψ‖Hα‖φ‖Hαθn,
with θn = an (0 ≤ a < 1).

Theorem 20 ([CLR20, BR21]). Let T be a random dynamical system on X over
(Ω, B(Ω),P, ϑ) with an invariant measure µ such that Dk(ν) > 0. Then for µk-
almost every (ω1, x1, . . . , ωk, xk) ∈ (Ω×X)k,

lim
n→∞

logmω1,...,ωk
n (x1, . . . , xk)

− log n
≤ k

(k − 1)Dk(ν)
.
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Moreover, if the random dynamical system satisfies assumptions (H1R) and ν sat-
isfies (HA), then

lim
n→∞

logmω1,...,ωk
n (x1, . . . , xk)

− log n
≥ k

(k − 1)Dk(ν)
,

and if Dk(ν) exists, then

lim
n→∞

logmω1,...,ωk
n (x1, . . . , xk)

− log n
=

k

(k − 1)Dk(ν)
.

The proof of this theorem follows exactly the same ideas explained in the proof
of Theorem 3.

We now apply the above result to the non-i.i.d. random dynamical system de-
fined in Example 2.7. We observe that, in [CLR20], Theorem 20 was also applied
to randomly perturbed dynamical systems and random hyperbolic toral automor-
phisms.

Example 4.6 (Non-i.i.d. random expanding maps). As in Example 2.7, let T1 and
T2 be the two following maps defined on the one-dimensional torus X = T1:

T1 : X −→ X and T2 : X −→ X
x 7−→ 2x x 7−→ 3x

chosen following a Markov process with the stochastic matrix

A =

(
1/2 1/2
1/3 2/3

)
.

Since in this example ν = Leb, we have Dk(ν) = 1, thus Theorem 20 implies
that for Leb2k-almost every (ω1, x1, . . . , ωk, xk) ∈ ([0, 1]× T1)k,

lim
n→∞

logmω1,...,ωk
n (x1, . . . , xk)

− log n
=

k

k − 1
.
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Chapter 5. The longest common substring problem

Motivations to study sequence matching or sequence alignment can be found in
various fields of research (e.g. computer science, biology, bioinformatics, geology
and linguistics, etc.)

One particularly relevant object in DNA comparison is the longest common
substring, i.e. the longest string of DNA which appears in two (or more) strands.
For example, for the following two strands

ACAATGAGAGGATGACCTTG

TGACTGTAACTGACACAAGC

a longest common substring is ACAA (TGAC is also a longest common substring)
and is of length 4 when the total length of the strands is 20.

In this chapter, we will concentrate on the behaviour of the length of the longest
common substring when the length of the strings grows, more precisely, for two
sequences x and y, the behaviour, when n goes to infinity, of

Mn(x, y) = max{m : xi+k = yj+k for k = 1, . . . ,m and for some 0 ≤ i, j ≤ n−m}.
For sequences drawn randomly from the same alphabet, this problem was studied
by Arratia and Waterman in [8]. More precisely, if each term of the sequences is
drawn independently within some alphabet A with respect to some probability P ,
then they proved that for PN ⊗ PN-almost every (x, y) ∈ AN ×AN

lim
n→∞

Mn(x, y)

log n
=

2

− log p

where p =
∑

a∈AP(a)2.
They also proved the same result for independent irreducible and aperiodic

Markov chains on a finite alphabet, and in this case p is the largest eigenvalue
of the matrix [(pij)

2] (where [pij] is the transition matrix).
In fact, one can observe that in both case, − log p corresponds to the Rényi

entropy of µ (see Definition 5.1). Generalizations of the work [8] to sequences of
different lengths, different distributions, more than two sequences, extreme value
theory for sequence matching and distributional results can be found in e.g. [9, 7,
10, 11, 57, 30, 63, 62].

In [BLR19], we showed that a generalization of the longest common substring
problem is to study the behaviour of the shortest distance between two orbits (we
recall that mn(x, y) = mini,j=0,...,n−1 (d(T ix, T jy))). Indeed, when X = AN for some
alphabet A and T is the shift on X, we can consider the distance between two
sequences x, y ∈ X defined by d(x, y) = e−k where k = inf{i ≥ 0, xi 6= yi}.

Then, assuming that mn is not too small, that is − logmn(x, y) ≤ n (we saw in
Theorem 15 that this condition is satisfied for almost all couples (x, y) if n is large
enough), one can observe that almost surely

Mn(x, y) ≤ − logmn(x, y) ≤M2n(x, y).

Thus Mn(x, y) and − logmn(x, y) have the same asymptotic behaviour.
In this chapter, we will show how, in [BLR19, CLR20, R21, R21b], we generalized

the results of Arratia and Waterman to α-mixing systems with exponential decay,
run-length encoded sequences and random subshift of finite type.
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5.1 Longest common substring between random se-
quences

We will consider in this section the symbolic dynamical systems (Ω,P, σ), where Ω =
AN for some alphabet A, σ is the (left) shift on Ω and P is a σ-invariant probability
measure. For k sequences x1, . . . , xk ∈ Ω, we are interested in the behaviour of

Mn(x1, ..., xk)

= max{m : x1
i1+j = ... = xkik+j for j = 0, ...,m− 1 and for some 0 ≤ i1, ..., ik ≤ n−m}.

We will show that the behaviour of Mn is linked with the generalized Rényi entropy
of the system.

For y ∈ Ω we denote by Cn(y) = {z ∈ Ω : zi = yi for all 0 ≤ i ≤ n − 1}
the n-cylinder containing y. Set Fn0 as the sigma-algebra over Ω generated by all
n-cylinders.

Definition 5.1. For k > 1, we recall the definition of the lower and upper generalized
Rényi entropy:

Hk(P) = lim
n→+∞

log
∑

P(Cn)k

−(k − 1)n
and Hk(P) = lim

n→+∞

log
∑

P(Cn)k

−(k − 1)n
,

where the notation
∑

P(Cn)k means
∑
y∈An

P(Cn(y))k. When the limit exists, we will

denote it by Hk(P).

Even if the existence of the Rényi entropy is not known in general, it was com-
puted in some particular cases: Bernoulli shift, finite state Markov chains, Gibbs
measure of a Hölder-continuous potential [50] and infinite state Markov chains [25].
The existence was also proved for φ-mixing measures [61], for weakly ψ-mixing pro-
cesses [50] and for ψg-regular processes [2, 4].

Remark 5.2. If for a symbolic dynamical system, we consider the distance between
two sequences x, y ∈ X defined by d(x, y) = e−k where k = inf{i ≥ 0, xi 6= yi}, then
the Renyi entropy of order k can be seen as the symbolic equivalent of the generalized
fractal dimension of order k defined in Section 1.1.

We say that a system (Ω,P, σ) is α-mixing if there exists a function α : N → R
satisfying α(g) → 0 when g → +∞ and such that for all m,n ∈ N, A ∈ Fn0 and
B ∈ Fm0 : ∣∣P(A ∩ σ−g−nB)− P(A)P(B)

∣∣ ≤ α(g).

It is said to be α-mixing with an exponential decay if the function α(g) decreases
exponentially fast to 0.

We say that our system is ψ-mixing if there exists a function ψ : N→ R satisfying
ψ(g)→ 0 when g → +∞ and such that for all m,n ∈ N, A ∈ Fn0 and B ∈ Fm0 :∣∣P(A ∩ σ−g−nB)− P(A)P(B)

∣∣ ≤ ψ(g)P(A)P(B).

Now we are ready to state our next result. The case k = 2 was treated in [BLR19]
while the case k ≥ 2 was treated in [BR21].
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Theorem 21 ([BLR19, BR21]). If Hk(P) > 0, then for Pk-almost every (x1, . . . , xk) ∈
Ωk,

lim
n→+∞

Mn(x1, . . . , xk)

log n
≤ k

(k − 1)Hk(P)
.

Moreover, if the system is α-mixing with an exponential decay or if it is ψ-mixing
with ψ(g) = g−a for some a > 0 then, for Pk-almost every (x1, . . . , xk) ∈ Ωk,

lim
n→+∞

Mn(x1, . . . , xk)

log n
≥ k

(k − 1)Hk(P)
.

Therefore, if the generalized Rényi entropy exists, then for Pk-almost every (x1, . . . , xk) ∈
Ωk,

lim
n→+∞

Mn(x1, . . . , xk)

log n
=

k

(k − 1)Hk(P)
.

This theorem can be applied, for example, to Markov chains and Gibbs states:

Example 5.3 (Markov chains). If (Ω,P, σ) is an irreducible and aperiodic Markov
chain on a finite alphabet A, then it is ψ-mixing with an exponential decay (see e.g.
[22]). If we denote by P the associated stochastic matrix (with entries Pij), then the
matrix P (k) whose entries are Pij(k) = P k

ij has, by the Perron-Frobenius theorem,
a single largest eigenvalue λk. Moreover, the generalized Rényi entropy exists and
Hk(P) = − log λk/(k − 1) [50]. Thus, for Pk-almost every (x1, . . . , xk) ∈ Ωk,

lim
n→+∞

Mn(x1, . . . , xk)

log n
=

k

− log λk
.

Example 5.4 (Gibbs states). Let P be a Gibbs state of a Hölder-continuous potential
φ. Then, the system is ψ-mixing with an exponential decay [21, 76]. Moreover, the
generalized Rényi entropy exists and Hk(P) = (1/(k − 1)) (kP (φ)− P (kφ)) where
P (φ) is the pressure of the potential φ [50]. Thus, for Pk-almost every (x1, . . . , xk) ∈
Ωk,

lim
n→+∞

Mn(x1, . . . , xk)

log n
=

k

kP (φ)− P (kφ)
.

5.2 Longest common substring for run-length en-
coded sequences

One could wondered if the results of the previous section hold if the sequences
are transformed following certain rules of modification. More precisely, if f is a
measurable function (called an encoder) transforming a sequence x into another
sequence f(x), one could like to study the behaviour of Mn(f(x), f(y)) and try to
obtain a relation with the Rényi entropy of the pushforward measure f∗P. In this
section, we will focus on this problem when the encoder is a compression algorithm:
the run-length encoder.
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For sequences with long runs of the same value, Run-Length Encoding (RLE) is
a simple and efficient lossless data compression method. More precisely, for a run
of the same value, the algorithm stored the value and the length of the run. For
example, the following binary sequence

00001110000000011001111111111100000000

will be compressed as

(0, 4)(1, 3)(0, 8)(1, 2)(0, 2)(1, 9)(0, 8).

Thus, this sequence of 37 characters will be represented after compression by a
sequence of 14 characters.

RLE is typically used for image compression but has also application in image
analysis [51], texture analysis of volumetric data [78] and has also been used for data
compression of television signals [71] and fax transmission [55].

As in the previous section, we consider the symbolic dynamical systems (Ω,P, σ).
We assume that alphabet A is finite.

We now define properly the run-length encoder:

Definition 5.5. Let B = {(α, k)}α∈A,k∈N. We define the run-length encoder f :
AN → BN by

f(α1 . . . α1︸ ︷︷ ︸
k1

α2 . . . α2︸ ︷︷ ︸
k2

. . . αn . . . αn︸ ︷︷ ︸
kn

. . . ) = (α1, k1)(α2, k2) . . . (αn, kn) . . .

We observe that for all i ∈ N, we consider that αi+1 6= αi.

We will focus our analysis on the length of the longest common substring of
RLE sequences. Given two sequences x, y ∈ Ω, we will study the behaviour of the
n-length of the longest common substring of the RLE sequences f(x) and f(y)

MRLE
n (x, y) := Mn(f(x), f(y)).

To obtain information on the growth length of the longest common substring for
RLE sequences, we will need an assumption on the decay of the measure of cylinders:

(A) There exist c > 0 and h > 0, such that for any n ∈ N and any a ∈ A

P(a . . . a︸ ︷︷ ︸
n

) ≤ ce−hn.

We observe that in particular this assumption is always satisfied if the process
is ψ-mixing with summable decay [42, Lemma 1].

In [R21b], we proved a lower and an upper bound for the growth rate of the
length of the longest common substring for RLE sequences:

Theorem 22 ([R21b]). If H2(f∗P) > 0 and if hypothesis (A) is satisfied, then for
P⊗ P-almost every x, y,

lim
n→∞

MRLE
n (x, y)

log n
≤ 2

H2(f∗P)
·
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Moreover, if the system is α-mixing with an exponential decay (or ψ-mixing with
ψ(g) = g−a for some a > 0), then, for P⊗ P-almost every x, y,

lim
n→∞

MRLE
n (x, y)

log n
≥ 2

H2(f∗P)
·

Thus, if the Rényi entropy exists, we get for P⊗ P-almost every x, y,

lim
n→∞

MRLE
n (x, y)

log n
=

2

H2(f∗P)
.

We will now give two examples satisfying our assumptions and where the Rényi
entropy of the pushforward measure can be explicitly computed (for more details,
we refer the reader to [R21b]).

Example 5.6 (Bernoulli process). Let us consider the alphabet A = {a, b} and the
Bernoulli measure P such that P([a]) = p and P([b]) = 1− p with 0 < p < 1.

For P⊗ P-almost every realizations x, y, we have

lim
n→∞

MRLE
n (x, y)

log n
=

4

log
(

(1+p)(2−p)
p(1−p)

) .
Example 5.7 (Markov chain with more than 2 states). Let us consider (Ω,P, σ) an
irreducible and aperiodic Markov chain on the finite alphabet A = {αi}1≤i≤N and
with transition matrix P = (pij)1≤i,j≤N with 0 < pij < 1 for every 1 ≤ i, j ≤ N .

We define the following transition matrix Q = (q(αi,k)(αj ,`))1≤i,j≤N,k,`∈N where for
all 1 ≤ i ≤ N and k, ` ∈ N

q(αi,k)(αi,`) = 0.

and for i 6= j

q(αi,k)(αj ,`) =
pijp

`−1
jj (1− pjj)
(1− pii)

.

Let λ be the largest positive eigenvalue of the matrix Q2 =
((
q(αi,k)(αj ,`)

)2
)

1≤i,j≤N,k,`∈N
.

Then, we have for P⊗ P-almost every x, y

lim
n→∞

MRLE
n (x, y)

log n
=

2

− log λ
.

5.3 Longest common substring for random subshift
of finite type

In this section, we will study the longest common substring for random subshift of
finite type (following the setting of Section 1.3). Since, as explain in the introduction
of this chapter, studying the longest common substring for a symbolic system is
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equivalent to studying the shortest distance between orbits, this section can be seen
as a symbolic version of Section 4.3. Moreover, we emphasize that for random
subshift we managed to obtain quenched results while only the annealed case was
treated in Section 4.3.

To obtain our results, we will need information on the decay of the measure of
cylinders, thus we define

h2 = lim
k→+∞

log
∫

Ω
max
Ck

µω(Ck)dP

−k

where the max is taken over all k-cylinders.
We will assume the following: there is a constant a ∈ [0, 1) and a function α(g)

satisfying α(g) = O(ag) such that for all n,m, A ∈ Fn0 (X) and B ∈ Fm0 (X):

(I) the marginal measure ν satisfies∣∣ν(A ∩ σ−g−nA)− ν(A)2
∣∣ ≤ α(g);

(II) for P-almost every ω ∈ Ω∣∣µω(A ∩ σ−g−nB)− µω(A)µθn+gω(B)
∣∣ ≤ α(g).

One can observe that assumption (I) is weaker than α-mixing since in the in-
tersection we only deal with the same cylinder A. We recall that the measure ν is
α-mixing if:

(I-a) (exponential α-mixing) the marginal measure ν satisfies∣∣ν(A ∩ σ−g−nB)− ν(A)ν(B)
∣∣ ≤ α(g)

for all m,n, A ∈ Fn0 (X) and B ∈ Fm0 (X).

First of all, we consider the annealed case:

Theorem 23 ([CLR20]). If 0 < H2(ν), then

lim
n→∞

Mn(x, y)

log n
≤ 2

H2(ν)
for µ⊗ µ-almost every ((ω, x), (ω̃, y)) ∈ E × E.

Moreover, if hypothesis (I-a) holds, then

lim
n→∞

Mn(x, y)

log n
≥ 2

H2(ν)
for µ⊗ µ-almost every ((ω, x), (ω̃, y)) ∈ E × E.

First of all, we observe that the statement of this theorem is slightly different
that the one of Theorem 4.4 in [CLR20] since they consider more general dynamical
systems and not only random subshifts of finite type. Nevertheless, one can adapt
easily their results and proof to obtain the theorem as stated here.

We observe that the technics used in [CLR20] only give annealed results, thus,
in [R21], we used different tools to obtain quenched results.

We present now the first quenched result of this section which gives an upper
bound for the growth rate of the longest common substring.
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Theorem 24 ([R21]). If 0 < H2(ν) ≤ 2h2 and if hypothesis (I) and (II) hold, then
for P-almost every ω ∈ Ω,

lim
n→∞

Mn(x, y)

log n
≤ 2

H2(ν)
for µω ⊗ µω-almost every (x, y) ∈ Eω × Eω.

One can notice that in the deterministic case (Theorem 21) and in the annealed
case (Theorem 23), no mixing assumptions are needed to obtain the upper bound.
The main problem and difference with the deterministic case is that the sample
measures are not invariant which is the main reason to use mixing to obtain the
upper bound (and the lower).

Moreover, one can observe that assuming H2(ν) ≤ 2h2 is not a too restrictive
assumption. Indeed, in the deterministic case this hypothesis is always satisfied (see
e.g. [50] in the proof of Theorem 1 (IV)). In the random setting, this assumption
prohibits for example to have some sample measures with an extreme behaviour
(relatively with the others).

To obtain a lower bound, we will need stronger assumptions: we will need α-
mixing for the measure ν and we will require some mixing properties for the base
transformation (Ω, θ,P).

First of all, we will treat the case when (Ω, θ,P) is a ρ-mixing two-sided shift,
i.e. Ω = AZ for some alphabet A, θ is the shift and:

(III) (exponential ρ-mixing) For all n and for all ψ ∈ L2(Fn−∞(Ω)) and φ ∈ L2(F∞0 (Ω))∣∣∣∣∫
Ω

ψ.φ ◦ θn+g dP−
∫

Ω

ψdP
∫

Ω

φdP
∣∣∣∣ ≤ ρ(g)‖ψ‖2‖φ‖2

with ρ(n) = O(an).

Moreover, we will need that the sample measure µω of a cylinder of size n does not
depend on all the terms of ω:

(IV) there exists a function ` with `(n) = O(n) such that for P-almost every ω and
every cylinder C ∈ Fn0 (X), the function ω 7→ µω(C) belongs to L2(F `(n)

−`(n)(Ω)).

One can observe that it is quite simple to check if assumption (IV) is satisfied,
however this assumption is restrictive and only enables us to work with some special
family of sample measures.

To deal with more general random subshifts (e.g. random Gibbs measures) we
need a stronger mixing assumption on the base (Ω, θ,P) (satisfied for example for
Anosov diffeomorphisms [59]):

(III’) (exponential 3-mixing) There exists a Banach space B such that for all ψ, φ, ϕ ∈
B, for all n ∈ N∗ and m ∈ N∗, we have∣∣∣∣∫

Ω

ψ.φ ◦ θn.ϕ ◦ θn+m dP−
∫

Ω

ψdP
∫

Ω

φdP
∫

Ω

ϕdP
∣∣∣∣ ≤ ‖ψ‖B‖φ‖B‖ϕ‖Bρ(min(n,m))

with ρ(n) = O(an) and ‖.‖B is the norm in the Banach space B.
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We are now able to replace assumption (IV) by a less restrictive assumption:

(IV’) There exists ξ ≥ 0 such that for every n ∈ N and every cylinder C ∈ Fn0 (X),
the functions ψ1 : ω 7→ µω(C) and ψ2 : ω 7→ maxCn µω(Cn) (where the max is
taken over all n-cylinders) belong to the Banach space B and

‖ψ1‖B ≤ ξn and ‖ψ2‖B ≤ ξn.

We observe that some alternative assumptions where also given in [R21] to work
with infinite alphabets for example.

Theorem 25 ([R21]). If 0 < H2(ν) ≤ H2(ν) < 2h2 and if
• hypothesis (I-a), (II), (III) and (IV) are satisfied,

or
• hypothesis (I-a), (II), (III’) and (IV’) are satisfied,

then, for P-almost every ω ∈ Ω,

lim
n→∞

Mn(x, y)

log n
≥ 2

H2(ν)
for µω ⊗ µω-almost every (x, y) ∈ Eω × Eω.

Moreover, if the Rényi entropy exists, we get for P-almost every ω ∈ Ω,

lim
n→∞

Mn(x, y)

log n
=

2

H2(ν)
for µω ⊗ µω-almost every (x, y) ∈ Eω × Eω.

We will now apply our results to random Bernoulli shifts. We observe that
random Gibbs measures where also treated in [R21].

Example 5.8 (Random Bernoulli shifts). Let s ≥ 1 and (Ω, θ) be a subshift of finite
type on the symbolic space {0, 1, . . . , s}Z and let P be a Gibbs measure from a Hölder
potential.

Let b ≥ 1 and make the shift {0, 1, . . . , b}N a random subshift by putting on it
the random Bernoulli measures constructed as follows. Let W = (wij) be a s × b
stochastic matrix with entries in (0, 1). Set pj(ω) = wω0,j. The random Bernoulli
measure µω is defined by

µω([x0 . . . xn]) = px0(ω)px1(θω) . . . pxn(θnω).

We proved in [R21] that if 0 < H2(ν) ≤ 2h2 one can apply Theorem 24 and if
besides that H2(ν) < 2h0 then one can apply Theorem 25.

For example, when the base is i.i.d., we can compute the Rényi entropy:

H2(ν) = − log

(∑
x0

(∫
px0(ω)dP

)2
)

and show that
h2 = − log

(∫
max
x0

px0(ω)dP
)
.
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So, if H2(ν) < 2h2 (which can be easily checked), we have for P-almost every ω ∈ Ω,

lim
n→∞

Mn(x, y)

log n
=

2

− log
(∑

x0

(∫
px0(ω)dP

)2
)

for µω ⊗ µω-almost every (x, y) ∈ Eω × Eω.
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