Prova n°1

Avisos : Celulares desligados ; 1h50 de prova! Só terá validade o que estiver a caneta!

Questão 1

Considere os vetores $\vec{u} = -1\vec{j} + 2\vec{k}$, $\vec{v} = 1\vec{i} + 1\vec{j} - 2\vec{k}$ e $\vec{w} = 1\vec{i} + 2\vec{j} + 1\vec{k}$. Verdadeiro ou falso? Justifique todas as opções falsas. (**Não** precisa justificar as opções verdadeiras.)

- a. Os vetores \vec{u} e \vec{v} são LI.
- b. $\{\vec{u}, \vec{v}\}$ é uma base do espaço.
- c. $\{\vec{u}, \vec{v}, \vec{w}\}$ é uma base negativa.
- d. $\vec{u} \times \vec{v}$ é um vetor ortogonal a \vec{u} e \vec{v} ao mesmo tempo.
- e. O angulo entre \vec{v} e \vec{w} é $\frac{\pi}{4}$.
- f. A área do paralelogramo de arestas \vec{u} e \vec{v} é $\sqrt{5}$.
- g. O volume do paralelepípedo de arestas \vec{u}, \vec{v} e \vec{w} é igual a $\sqrt{5}$.
- h. Os vetores \vec{u} e \vec{v} são ortogonais.
- i. Os vetores \vec{u} , \vec{v} e \vec{w} são LD.
- j. $proj_{\vec{w}}\vec{v} = (-2, -4, -2).$

Questão 2

Seja ABC um triangulo tal que $\|\overrightarrow{AB}\| = 3$, $\|\overrightarrow{AC}\| = \sqrt{5}$ e o angulo entre \overrightarrow{AB} e \overrightarrow{AC} seja $(\overrightarrow{AB},\overrightarrow{AC}) = \frac{\pi}{3}$.

- a. Calcular a area do triangulo ABC.
- b. Calcular $\|\overrightarrow{AB} + \overrightarrow{AC}\|$.

Questão 3

Sabendo que a projeção de \vec{u} sobre \vec{v} é $(-1,2),\ \vec{v}=(-2,4),\ \|\vec{u}\|=\sqrt{10}$ e $,\langle\vec{u},(1,1)\rangle<0,$ determinar $\vec{u}.$