Test Drive

Questão 1. Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ uma transformação linear dada por T(x,y,z) = (2x+y-z,3x-2y+4z). Encontre a matriz associada a T usando a base $B = \{(1,1,1),(1,1,0),(1,0,0)\}$ em \mathbb{R}^3 e a base $C = \{(1,3),(1,4)\}$ em \mathbb{R}^2 .

Questão 2. Considere uma aplicaca
o linear $T:V\to V$, onde V é o espaco vetorial gerado pelo conjunto $B=\{e^x,xe^x\}$, definida por T(f)=f'. Calcule $[T]_B^B$.

Questão 3. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear e as bases $A = \{(3,4), (5,7)\}$ e $B = \{(1,1)(-1,1)\}$ tal que

$$[T]_A^A = \left(\begin{array}{cc} -2 & 4\\ 2 & -1 \end{array}\right).$$

- Calcule $[T]_B^B$.
- ullet O operador T é inversivel? Justifique sua resposta.

Questão 4. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformação linear cuja matriz em relação a base canonica é dada por

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{array}\right).$$

- ullet O operador T é ortogonal? Justifique sua resposta.
- ullet O operador T é simetrico? Justifique sua resposta.
- \bullet O operador T é diagonalizavel? Justifique sua resposta. Em caso afirmativo encontre a sua matriz diagonal.

Questão 5. Seja

$$[T] = \left(\begin{array}{cc} 4 & 9/4 \\ -1 & 1 \end{array}\right).$$

- \bullet O operador T é diagonalizavel?
- ullet Se a resposta anterior for negativa, encontre a forma de Jordan de T bem como a matriz P de passagem.