Departamento de Matemática
Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 687
4169-007 Porto

Assistant Professor

Departamento de Matemática
Universidade Federal da Bahia
Avenida Ademar de Barros s/n
40170-110 Salvador, BA


CV (in english)
Curriculo Lattes
Id orcid.org/0000-0003-3175-1176


My fields of specialization are Dynamical Systems and Probability. My research activity mainly concerns the study of Poincaré recurrence (for rapidly mixing systems, random dynamical systems and flows) and Sequence Matching problems, with emphasis in Hitting times Statistics, Return Times Statistics, Extreme Value Laws, Dimension Theory and Longest Common Substring Problems.

  1. Longest common substring for random subshifts of finite type, J. Rousseau, preprint (pdf)
  2. Matching strings in encoded sequences, A. Coutinho, R Lambert and J. Rousseau, preprint (pdf)
  3. On the shortest distance between orbits and the longest common substring problem, V. Barros, L. Liao and J. Rousseau, Advances in Mathematics 344 (2019),311-339 (pdf)
  4. Exponential Law for Random  Maps  on Compact Manifolds, N. Haydn, J. Rousseau and F. Yang, preprint (pdf)
  5. Large deviation for return times, A. Coutinho, J. Rousseau and B. Saussol, Nonlinearity 31 (2018), no. 11, 5162–5179 (pdf)
  6. Concentration inequalities for sequential dynamical systems of the unit interval, R. Aimino and J. Rousseau, Ergodic Theory Dynam. Systems 36 (2016), no. 8, 2384-2407 (pdf)
  7. Hitting times and periodicity in random dynamics, J. Rousseau and M. Todd, J. Stat. Phys. 161 (2015), no. 1, 131-150 (pdf)
  8. Skew products, quantitative recurrence, shrinking targets and decay of correlations, S. Galatolo, J. Rousseau and B. Saussol, Ergod. Th. & Dynam. Sys. 35 (2015), no. 6, 1814-1845 (pdf)
  9. Hitting time statistics for observations of dynamical systems, J. Rousseau, Nonlinearity 27 (2014), 2377-2392 (pdf)
  10. Exponential law for random subshifts of finite type, J. Rousseau, B. Saussol and P. Varandas, Stochastic Processes and their Applications 124 (2014), no. 10, 3260-3276 (pdf)
  11. Recurrence rates for observations of flows, J. Rousseau,  Ergodic Theory Dynam. Systems 32 (2012), no. 5, 1727-1751 (pdf)
  12. Entropy formulas for dynamical systems with mistakes, J. Rousseau and P. Varandas and Y. Zhao, Discrete Contin. Dyn. Syst. 32 (2012), no.12, 4391-4407 (pdf)
  13. Recurrence for random dynamical systems, P. Marie and J. Rousseau, Discrete Contin. Dyn. Syst. 30 (2011), no.1, 1-16 (pdf)
  14. Poincaré recurrence for observations, J.Rousseau and B.Saussol, Trans. Amer. Math. Soc. 362 (2010), no. 11, 5845-5859 (pdf)

I did my PhD Thesis under the supervision of Benoit Saussol on the quantitative study of Poincaré recurrence for observations.
I did posdoctoral research under the supervision of Krerley Oliveira.
From September 2014 to December 2015, I visited the Department of Mathematics of the University of Illinois at Urbana-Champaign.

PhD Thesis
(in french)

Récurrence de Poincaré pour les observations


Listas de exercícios: